
AD-A256 795 ( 1
I~lll[ill~il~llllllli ••MASSACHUSETTS ISTUEO

LABORATORY FOR MNSACTUTEO
COMPUTER SCIENCE TECHNOLOGY

MIT/LCS/TR-546 f ELECTE
NOV6 1992 , )

PROCEEDINGS OF THE
1992 MIT STUDENT WORKSHOP

ON
VLSI AND PARALLEL SYSTEMS

Edited by
Charles E. Leiserson

92-28938
II1,I 1|111111t11ii11111111 11,111 E August 1 992

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

92.1; 2
" • /4-



Proceedings of the
1992 MIT Student Workshop

on
VLSI and Parallel Systems

....s . .......

DTCQUALMT f,- :c

Edited by Charles E. Leiserson

Aceession For

July 21, 1992 -v

~~Codes



The papers in this volume were submitted to the 1992 MIT Student Workshop on VLSI
and Parallel Systems. The workshop was organized by the VLSI and Parallel Systems
Group at MIT to promote an interchange of ideas among the various research activities
at MIT in VLSI and parallel systems. It was held on July 21, 1992 at the MIT Endicott
House in Dedham, Massachusetts. Of the 54 papers in this proceedings, 16 were chosen
for presentation at the workshop. These papers are marked with an asterisk.



Proceedings of the 1992 MIT Student Workshop
on

VLSI and Parallel Systems

MIT Endicott House
July 21, 1992

Program Committee: Anant Agarwal
William J. Dally
Srinivas Devadas
Thomas F. Knight, Jr.
F. Thomson Leighton
Charles E. Leiserson, Chairman
Gregory M. Papadopoulos
Stephen A. Ward
William E. Weihl
Jacob K. White



Contents

1. Micron-Scale Display Technology
Phillip Alvelda

2. Optimization of Loops for Dynamic Dataflow Machines
Boon Seong Ang

3. Virtual Memory for Data-Parallel Computing*
Lars E. Bader and Thomas H. Cormen

4. The Optimal Synthesis of VLSI Array Architectures from Algorithmic
Descriptions
Donald G. Baltus

5. Managing Sttorage for Multithreaded Computations*
Robert Blumofe

6. Clay-i: A Distributed Bit-Parallel Computer
Mike Bolotski

7. Migration in Distributed-Memory Multiprocessors
Eric A. Brewer

8. Improving the Performance of Cache Memories Without Increasing Cache Size or
Associativity
Nicholas Carter

9. Multi-threaded Compilation of Id Programs
Yonald Chery

10. Frame Memory Management for the Monsoon Processor
Derek Chiou

11. Reconfiguration of Multipath MIN Architectures
Fred Chong

12. Scan-Based Testability for Fault-Tolerant Architectures
Andre DeHon

13. Serializing Parallel Programs
Michael D. Ernst

14. A Systems Language Compiler for the J-Machine
D. Brennan Gaunce

15. The Coprocessor Host Interface Chip*
Nikhil Gautam



16. Performance Evaluation of Network Interfaces*
Dana Henry and Chris Joerg

17. AIDA: Data Structure Optimization on a MIMD Parallel Computer
Waldemar Horwat

18. Computation Migration in Parallel Systems
Wilson Hsieh

19. The Impact of Communication Locality on Large-Scale Multiprocessor
Performance
Kirk L. Johnson

20. On the Second Eigenvalue and Linear Expansion of Regular Graphs
Nabil Kahale

21. Efficient Techniques for Inductance Extraction of Complex 3-D Geometries*
Mattan Kamon

22. Logged Commit Dependencies for Highly Concurrent Databases*
John S. Keen

23. Monte Carlo Radiation Transport Simulation for Benchmarking Intel's
Touchstone Delta Machine
Thomas J. Klemas

24. Small-Depth Counting Networks*
Michael Klugerman and C. Greg Plaxton

25. Dynamic Alignment in SPMD Compilation
Kathleen Knobe

26. The Anatomy of a Message Send
John Kubiatowicz

27. Closing the Window of Vulnerability in Multiphase Memory Transactions*
John Kubiatowicz, David Chaiken, and Anant Agarwal

28. The Data Network of the Connection Machine CM-5*
Bradley C. Kuszmaul

29. Highly Parallel Alpha-Beta Search
Bradley C. Kuszmaul

30. Automatic Generation and Verification of Sufficient Correctness Properties of
Synchronous Array Processors
Stan Y. Liao



31. Concurrent Counting for Multiprocessor Load Balancing
Beng-Hong Lim

32. An Implicit Particle Method for Monte Carlo Device Simulation
Jennifer Lloyd

33. Fault-Tolerant Sorting Circuits
Yuan Ma

34. Reduced-Latency Memory Assignment for Multiprocessor Caches
Marios Papaefthymiou, Anant Agarwal, and John Guttag

35. Performance Assertion Checking*
Sharon E. Perl

36. NuMesh CFSM Rev2°
John S. Pezaris

37. Numerical Studies of Vortex Dynamics in Josephson Junction Arrays
Joel R. Phillips

38. An Iterative Approach for the Solution of the Boltzmann Transport Equation for
Semiconductors
Khalid Rahmat

39. Edge-Triggering vs. Level-Clocking
Keith H. Randall and Marios C. Papaefthymiou

40. Waveform Frequency-Dependent Overrelaxation for Transient Two-Dimensional
Simulation of MOS Devices
Mark Reichelt

41. Design of a Multithreaded Processor Architecture
Madhumitra Sharma

42. Approximation of Performance Parameters for Multistage, Multipath Networks*
Patrick G. Sobalvarro

43. Dribbling Registers: A Technique for Latency Tolerance in Large-Scale
Multiprocessors*
Vijayaraghavan Soundararajan and Anant Agarwal

44. Compiling TAM Code to the J-Machine
Ellen Spertus

45. Hindsight: Debugging Parallel Programs Using Reordering*
Bradford T. Spiers



46. Exploiting Algorithmic Locality in Water
Bradford T. Spiers and Donald Yeung

47. Evaluating Game Trees in Parallel
Clifford Stein

48. A Parallelizing Compiler Based on Partial Evaluation*
Rajeev Surati and Andrew Berlin

49. O2SA Arrays for Fast Sparse Matrix Decomposition*
Ricardo Telichevesky

50. A Sparc-based Processing Element for the NuMesh
Russell Tessier

51. Competitive Fault-Tolerance in Area-Universal Networks
Sivan Toledo

52. Software-Managed Variable-Size Contexts for Multithreading
Carl A. Waldspurger

53. A Model of a Hierarchical Cache Coherence Protocol
Deborah A. Wallach

54. Embedding Leveled Hypercube Algorithms into Hypercubes
David Bruce Wilson

55. Panel Discussion
"What Are the Grand Challenge Problems in Supercomputing Technology?"
Moderator: Eric Brewer
Scribe: David Chaiken



Micron-Scale Display Technology

Phillip Alveldal
NE43-810

alvelda@ai.mit.edu

I. Introduction
The primary objective of this current research project, is to design, fabricate, and test a micron-
scale liquid crystal-based virtual display. The intended application ibr this device is a small hand-
held or eyeglass-mounted display for systems such as a portable "pen-mounted oscilloscope"
(tricorder?) or heads-up type eyeglasses. Note that the design requirements for this system are
quite different from those of similar spatial light modulators fabricated for optical computing
applications where focal lengths are typically much longer. As such, several additional
psychophysical effects were considered when optimizing the display design for visual inspection.

In spite of several complications due to the addition of a liquid crystal surface, the low-mass and
static power dissipation characteristics of CMOS processes are shown to be quite usable as an
active electronic back-plane diplay driver. The final version of this prototype single-chip display
is expected to have a resolution of approximately 1000 x 1000 pixels on a 1 centimeter die.

Several preliminary designs for VLSI display sub-circuits will be presented, and the architecture
of the first-generation prototype awaiting fabrication through MOSIS will be discussed.

II. Background
A simple display can be fabricated by depositing an appropriate liquid crystal on the top of an
active CMOS backplane, and then sealing it with a cover glass whose inside surface has been
coated with a transparent conductor such as indium-tin-oxide. In equilibrium, the liquid crystal
sandwiched between the CMOS die and the coverglass assumes a particular orientational order
which when illuminated, is opaque. When a voltage is applied by the CMOS circuitry to a pixel
pad underneath the liquid crystal, the electric field re-aligns the LC molecules in an orientation
which is transparent. Since the Aluminum METAL2 used in the pixel pads is a good diffuse
reflector, simply shining a light on an array of appropriately addressed pixels produces an image.

Unfortunately since each pixel can range in size from 10 to 50 microns across, it produces a very
tiny image that is difficult to see without magnification. A quality microscope can provide a nice
image, but is rather inconvenient to lug about attached to one's eyeglasses. On-the-other-hand, a
simpler, more light-weight optical system introduces considerable distortion.

Several companies have begun compensating for this distortion in "virtual-reality" displays by pre-
processing the image data in real-time to pre-warp the image data before it is "distorted" by a
smaller optical system. Obviously, a real-time image processing computer is not yet typically
light-weight and would severely limit the portability of such a system. The solution demonstrated
in this' project, is a VLSI pixel array which is designed to approximate the inverse of the optical

1This work is supervised by Tom Knight for DARPA.

1-1



distortion function of a typical small lens system
without additional processing simply by appropriate
layout and scaling of the pixel elements. L
IM. The Pixel Array
For the preliminary device design, 324 pixels were
positioned in a precise 18 x 18 array tailored to exactly ...

account for the distortions introduced in the LEEP D -r
optical system (See Figure). Ray tracing experiments
through the actual optics resulted in a Distortion
function which was monotonically increasing with
radius from the optical axis. Therefore, there exists an [
inverse function which can negate this nonlinear Figure 1.0 Array Schematic.
distortion. A third-order polynomial fit to the
distortion function data provided an approximation to
the inverse function:

D-1(r,)=r,+cr,3 , K=0.32

This radially symmetric function would then be used to
position and scale the individual pixels of the display.
Since the array is very regular, albeit of peculiar and
specific form, a silicon compiler was used to -

implement a scalable architecture, where multi-size
chips can be auto "instanced and routed" with the late-
binding specification of only a few parameters such as
ARRAYWIDTH, PACKINGDENSITY, etc. And
while the L language from mentor has some of these
features, it does not have any built-in trigonometric
functions or floating-point math functions (i.e.
exponentials, logs, sin, cos, etc...). This Auto-Chip Figure 2.0 LEEP Distorion Function.
generator will also be presented.

Other issues which will also be discussed:
* Polygon generation for transformed pixel arrays
* Pixel Jitter and Anti-Aliasing
* Light-sensitivity and shielding
* Failure modes and redundancy
* Device Interface

References:
[11 Burns, D., Microcircuit Analysis Techniques using Field

effect Liquid Crystals, Proc. SPIE Volume 1256, 1987.
[21 Channin, D., Liquid Crystal Techniques for Observing

Integrated Circuit Operation, IEEE Transacuons on
Electron Devices, October, 1974.

Figure 3.0 Preliminary Chip Layout

1-2



Optimization of Loops for Dynamic
Dataflow Machines

Boon Seong Ang I ---. a.
NE43-205, hahaha~abp.lcs.mit.edu

Using the Id language, Monsoon has successfully
demonstrated the concept of dynamic dataflow
execution. Programs that are difficult to par-
allelise explicitly show considerable parallelism
when compiled [3] and run on Monsoon. How-
ever, run time statistics show that considerable
overhead is incurred compared to Von Neuman
code executing on uniprocessors. Loops, in par-
ticular, are expensive.

We pursued several compilation techniques for Figure 1: Caller's Sequential Loop Schema
loops that produce Monsoon code using fewer dy-
namic instructions than previous methods. We
first focused on producing good code for se- graphs. Culler[2] gave one such schema that uses
quential loops, which usually form the innermost two barriers. This is shown in Figure 1.
loops and have the biggest impact on run time.
We found two new compilation schema with sig- This schema, however, is very expensive. Con-
nificantly lower overhead. We also implemented sider this simple loop that computes the suma-
strip mining of k-bounded loops, which weakens tion of 1 to n:
data-dependence and thus increases parallelism;
and the lifting of allocation of reusable storage, (for i <- I to n do
including frames and certain heap objects, out next a = a +
of loops. We are currently collecting run time
statistics and comparing these with C/Fortran •1y '1;
code running on MIPS 1R3000.

In a sequential loop, only one iteration of the loop Under Culler's schema, each iteration takes 22
executes at any one time. From an implemen- tokens 3

tation point of view, the loop requires only one
frame, and passing values from one iteration to With the new schema shown in Figure 2, we
the next need not occur across the network. We can ensure no confusion occurs. Self gating, as
thus expect the code for sequential loop to be shown in the figure, is unnecessary for a nexti-
much more efficient than k-boundea loops, fled variable4 that is strict in itself , a situation

encountered often in real code. This can be deter-
Implementing sequential loops is tricky. As the mined by the compiler. Under the new schema,
tag of tokens from different iterations destined our summation example takes only 12 tokens per
for the same instruction are the same, tokens iteration.
from different iterations coul I be confused. The
compiler must ensure that this cannot happen by The implementation of sequential loops on Mon-
adding artificial data-dependence to the dataflow soon can be further improved by observing that

1_ SAi Fnnipodiprb mechanisms that support fine grain parallelism1 Supervisor A~rvind. Funding ii provided in per by

the Advanced Research Projects Agency of the Depart- 3 E&.h token takes cne cycle.
meat of Defence under Office of Naval Research contract 4A nextihed variable is a variable that is updated each
N00014-89-J-1988 iteration.

2 See [2i Ifor a definition of sequential and k-bounded *A nezifled variable is strict in itself if computation of
loop. its nest value always requires its current value.

2-1



e It breaks the coupling between the k frames
of a loop, allowing each to proceed inde-

... pendently at full speed. Previously, if one
of the k frames resided on a PE that was
busy executing other work, the entire loop
stalled. With strip mining, once the k se-
quential loops are started, a frame on a busy
PE will not affect the execution on the other
(k - 1) frames.

Allocation of reusable storage can be lifted out of
loops. Certain resources allocated within a loop
are only needed over one loop iteration, for in-
stance, frames for procedure invocation and loops
nestled within the outer loop. Insteas of allocat-

ing and deallocating once per iteration, we can
Figure 2: New Sequential Loop Schema do so just once for each frame of the loop. Once

frame allocation is lifted out, some other initial-
and synchronisation, such as switching at loop isation code, such as storage of loop corstants'
iteration boundaries, and synchronization with can also be lifted out.
nextified variable are not needed in sequential The same idea can be applied to heap objects
loops. Instead, we synchronize at the iteration th life-imes c on numbe r o loop ob ect
level. The values of nextifled variable are passed with life-times of a constant number of loop iter-
via memory locations instead of tokens. We call ations. Such examples, which abound in Id code

this Frame Based Nezified Variable optimization, doing iterative numerical computation, can eas-

With this schema, the summation example takes ily be detected at compile time. As before, we

only 7 tokens per iteration. can recycle those heap objects once they become
"garbage".

Strip mining breaks the data dependence be-
tween iterations of a F01 loop when all the up- We expect the optimisotions outlined here to pro-
dates to nexified variables are of some simple duce efficient Monsoon code from loops written
form, such as incrementing or decrementing a in Id. So far, results are encouraging. [1] contains

nexified variable by a constant amount each it- a detail report of this work.

eration. This can be extended to include opera-
tions that are both commutative and associative,
and whose resulting values are not used within References
the loop but merely returned from it.s

Strip mining of a k-bounded F0R loop converts [1] B. S. Ang. Optimization of Loops for Dy-

it into a pair of doubly nestled loops. The outer namic Datafiow Machines. MS thesis, MIT,

loop executes k iterations in parallel while the Cambridge MA, Under preparation.

inner loop, which does the original work, is se- [2] D. E. Culler. Managing Parallelism and Re-
quential. sources in Scientific Datflow Programs. PhD

Strip mining has two big advantages: thesis, MIT, Cambridge MA, Jun 1989.

[3] J. E. Hicks. Id Compiler Back End for ETS

* It allows us to use the sequential loop and Monsoon. CSG Memo 310, MIT Lab. for
schema, which is much cheaper then the k- Comp. Sci., Cambridge MA, Jun 1990.
bounded loop schema, while offering parallel
execution of the loop.

Overlow, underlow and precision in the case of loat- ?A loop-constant is a variable that is computed outside
iag point operations may cause some problems, the loop, and remains constant over the entire loop.

2-2



Virtual Memory for Data-Parallel Computing

Lars E. Bader Thomas Hf. Cormen
leb~theory.lcs.mit.edu thc~theory.lcs.mit.edu

MIT Laboratory or Computer Science
Cambridge, MA 02139

Some applications that are well-suited to data- * With column-major layout,
parallel computing, such as large finite-element prob-
lems, must sometimes process more data than will T-01 = S + 2 N- 2 A+3 NIO.
fit in the RAM of even the largest parallel computer. P BD
Consequently, the data typically resides on a disk ar-
ray and is brought into RAM as needed. * With blocked layout,

To support such applications, we have designed a N ( N N ) N
virtual-memory system for a data-parallel machine. Tbl.ck, = - S+ 2- + -- 2 A+2 -10.
Our system manages the disk I/O efficiently and re- BD P BD BD

moves the burden of planning disk I/O from the ap- Scans for blocked layout require only one physical
plication programmer. In this report, we focus on the scan per disk track and hence are faster than for
issues of data layout, page-replacement policy, and row-major layout. Specifically, Tbl•cke <_ T, when
permutation routing. A < S and N > BD > 2P, which holds for vec-

Our virtual-memory model lays out vectors across tors larger than a track since BD > P and S > A.
processors and across a set of disks organized into With blocked layout, scans read each track only once,
blocks of records. The parallel machine has P pro- rather than twice, as is the case with column-major
cessors, D disks, and B records per disk block. A layout. Hence, scans are faster with blocked layout.
track consists of a set of blocks at the same location Specifically, Tblockd :5 To0 when S < 10 - A and
on each disk, and it contains BD records. Vectors N > BD, which holds for vectors larger than a track
are organized by track on disk and by track image because 10 > S > A.
in RAM. Each parallel I/O operation transfers B The paging system manages vectors based on their
records between each disk and RAM, ,;ith BD/P size, with tracks treated as pages. When vectors
records transferred per processor. fit in RAM, we want the system to be roughly as

Significant data-parallel operations fall into three fast as a non-VM system. If we were to treat all
general categories-elementwise. operations, scans, tracks equally under LRU replacement, then accesses
and permutations-but the performance of only scans of large vectors could result in all small vectors be-
is affected by how vectors are laid out. As shown ing paged out of RAM. In fact, an LRU scheme may
in Figure 1, vectors can be laid out in row-major, be pointless for very large vectors, such as those that
column-major, or blocked fashions. exceed the RAM size. Observe that the first track

Our system uses blocked layout because it is a good accessed for such a vector may be paged out by the
compromise in limiting the number of scans across all time the last track is accessed, and thus accessing
the processors and the number of disk I/Os. Letting each track yields a page fault. Our system partitions
N be the number of records in a vector, S be the time RAM into two halves, with separate LRU replace-
required to scan once across the P physical proces- ment. One half holds only tracks of large vectors
sors, A be the time to perform an arithmetic opera- (more than one track), and the other half holds only
tion, and 10 be the disk I/O time, the scan times for tracks containing small vectors (at most one track).
the different vector-layout methods are the following: With this scheme, accesses to large and small vectors

do not interfere with each other's paging behavior.
* With row-major layout, The paging system may be made yet more efficient

by distinguishing between large vectors with size less
N (NN than the large-vector RAM, for which LRU replace-

Trow = S + 2 -1) A + 2 10. ment may reduce disk references, and those that are
P \P / §BD larger than the large-vector RAM, for which LRU re-

This research was supervised by Professor Charles E. Leis- placement does not improve paging performance.
erson and was supported in part by the Defense Advanced Our paging system is optimal when vectors are ac-
Research Projects Agency under Grant N00014-91-J-1698. cessed in a stack-like fashion. Performance for large

3-1



1 Pe 2 P3 P4P5 7 P T0 2 •2ýP4 P5 D7 P1 !F2 Tý 4 P5 T

S track

(a) (b) (c)

Figure 1: Three different ways to lay out vectors on a disk array, indicating the mapping of vector elements to
processors P0, "P• . . . Each 4 x 8 rectangle delimits a tr.ck. (a) Row-major layout. If a vector spans mo.e than

one track, it occupies a contiguous set of N/BD tracks, as shown. (b) Column-major layout, shown for 64 elements
per processor. (c) Blocked layout. It can be viewed as a, transpose within each track of the row-major layout, so that
the ordering is column-major within each track.

vectors and small stack-based vectors is competitive. mented specially.
For those data-parallel languages that tend to have There are three ways to incorporate special per-
stack-like accesses, good performance results. In ad- mutations into the virtual-memory system. First,
dition, our method is competitive if locations of small we can treat them as general permutations. Sec-
vectors are fixed on pages. A system with the ability ond, we can provide Linguistic constructs for them,
to relocate small vectors, however, may outperform avoiding the overhead of generating target addresses
our paging method, and enabling direct calls to special code. For exam-

Our system supports permutation operations, pro- pIe, the source language we use includes a pack in-
viding special routines for some types of permuta- struction, which performs a type of monotonic route.
tions that cao be performed faster than general per- Third, we can detect them at run time and call spe-
mutations. RAM is cleared to provide work space for cial code. Currently, we detect BPC permutations
large permutations, which are expensive. For gen- at run time by forming a candidate bit permutation,
eral permutations, we sort N target addresses us- using o(g(N/B) + 1)/Dt parallelle/Os, and then veFr-
diiong exrnaltradix sortwhicue if( N l oso l ifying that it describes the given permutation, using

ingexeralradx or, hic uese.-•Ig(M/BD), at most N/BD I/Os.
parallel I/Os. Theioptimal sorting and permuta- Our system uses the compiler for the source lan-

tion bound is e / ( •j}$.~~ parallel I/Os. achieved guage NE.SL and the interpreter for the stack-based
by the more complicated algorithms of Vitter and intermediate language VCODn developed by Blelloch
Shriver and also Nodine and Vitter. Some classes et al. Our virtual-memory system is a complete im-
of permutations that can be done faster than gen- plementation of CVL, which is the machine interface

eral ones are monotonic routes, mesh communi- for VCODE.. Rather than implement it on a real data-
cation, bit-permute/complement (BPC) permuta- parallel machine, we have chosen for convenience to
tions (which include matrix-transpose, bit-reversal, simulate it on workstations, which allows us to gen-

vector-reversal, hypercube, and matrix-reblocking erate machine-operation statistics that might be dif-
permutations), and bit-matrix-multiply/complement ficut to determine on a real machine. The simulator
(BMMC) permutations (which include Gray-code is written in about 7500 lines of C.
permutations). Monotonic routes require only one
read per source track and one write per destination
track. Storing the mesh so that each track holds a References
submesh, the elements on each track in a mesh per-
mutation are destined for either the same track or one [1] Thomas H. C trmen. Fast permuting in disk ar-
other, requiring O(N/BD) parallel I/O's. We have rays. In Proceedings of the 1992 Brwn/MIT Con-
implemented Cormen's algorithm [s] for BPC permu- terence on Advanced Research an VLSI and Par-
tations, and we have found that it provides a signif- allel Systems, pages 58-76, 1992. Conference ver-
icant speedup over the external radix-sort method, sion is an extended abstract; full paper to appear
Mesh and BMMC permutations are not yet imple- in Journal of Parallel and Distributed CompCtin..

3-2



The Optimal Synthesis of VLSI Array Architectures
From Algorithmic Descriptions

Donald G. Baltus'

The capabilities of VLSI technology now allow many al-
gorithms to be realized monolithically using application-
specific array architectures. While early work in this area

involved finding and describing architectures to solve spe-
cific problems, more recent research has been directed to-
wards the development of systematic methodologies for
synthesizing array architectures from high-level algorith-
mic descriptions 2 . This paper describes the array synthe-
sis system DESCARTES 3 which is being developed by
the author at MIT. As compared with other work in this 11 1) 11 u U3 a (ii

area, DESCARTES is applicable to a wider class of algo-
rithms and is the only system of its kind that incorporates
systematic and exhaustive architectural exploration into Figure 1: The Data Dependency Graph
the synthesis process.

The input to DESCARTES is essentially a set of affine While the ability to accurately predict implemen-
recurrence equations. Many important algorithms includ- tation-level characteristics is essential for effective
ing those in the areas of digital signal processing, graph performance-directed synthesis, the availability of these
theory, and matrix computation can be described using predictors complicates the tasks of architectural explo-
such recurrences. The target implementation space is a 1- ration and synthesis. If communication costs are ignored,
or 2-dimensional mesh of application-specific processing the problems of scheduling and of allocation can be solved
elements. Neither the processors nor their interconnec- in isolation. If communication delay is modeled as a func-
tions need be uniform throughout the array. For a given tion of relative spatial locations, however, the scheduling
input description, DESCARTES generates a set of pos- and allocation tasks become more closely linked and must
sible RTL-level implementations. The synthesis process be solved together.
includes an architectural exploration phase which guaran- The problem of combined scheduling and allocation is
tees that all legal designs which optimize a user-specified approached by casting the problem of architectural explo-
temporal objective function are generated. A simple ration as the problem of exploring different embeddings
matrix-vector product example will be used throughout of the nodes of the data dependency graph into a space-
the paper and is described below. The associated depen- time lattice. For each node, the location in one dimen-
dency graph (DG) is shown in Figure 1. sion designates the time at which the computation takes

3 place while the location in the other dimensions desig-
1 < i < 3, z(i) = E a(i, j) * b(j) nates the spatial location where the computation will be

j=1 performed4 .

Since algorithms are mapped onto a class of architec- Clearly not all embeddings in the space-time lattice
tures with well defined structural and interconnection are valid. More specifically, the nodes must be embedded
characteristics, important implementation-level costs can such that causality and communication delay constraints
be accurately predicted at the architectural level. More are satisfied, such that processor functionality constraints
specifically, the structured nature of the target architec- are satisfied, and finally such that bandwidth and I/O
ture allows spatial relationships between computations to constraints are met.
be seen at the architectural level. This information in Architectural exploration is thus reduced to the prob-
turn allows communication costs to be accurately mod- lem of exploring different embeddings that satisfy the con-
eled and incorporated into the design exploration process. straints outlined above. Each embedding represents a dif-

I MIT Rm. 36-881 (don@rle-vlsi.mit.edu). This research is su- ferent architecture. If each node of the dependency graph
pervised by Prof. Jonathan Allen and is funded by Analog Devices can bVe embedded independently, however, the problem
and IBM.

2 A survey of different techniques can be found in (1] while infor- 'While the space-time lattice is typically 2- or 3-dimensional,
mation on more recent work can be found in [21 and [3]. techniques have also been developed for mapping higher-

3 DESCAR.TES stands for Design Environment for Systematic dimensional lattices onto I- or 2-dimensional target arrsay
Cross-e.-vel ARchiTectural Exploration and Synthesis. architectures.

4-11



of architectural exploration becomes computationally in- The embedding constraints outlined above are first
tractable. The number of possible embeddings is expo- translated into constraints on the scheduling problem.
nentially related to the problem size and there is no guar- The scheduling problem is then efficiently solved as an in-
antee that any regularity that existed in the original al- teger linear programming (ILP) problem. A user-defined
gorithm specification will be preserved as that algorithm delay function serves as the cost to be optimized. Fi-
is mapped into the implementation space. nally, for each optimal schedule, consistent embeddings

This problem is solved by grouping similar nodes and in the space-time lattice are explored. Since very few
moving the members of each such group together during optimal schedules are typically found, full exploration of
architectural exploration. A group of similar nodes cor- the space-time lattice need only be performed a limited
responds to a subset of the dependency hierarchy whose number of times. The combined search efficiently and
elements are identical in all aspects except index location, exhaustively explores an important subset of all possible
Since similar nodes necessarily correspond to references of affine embeddings and returns all designs which optimize
the same array variable, -. set of spatial relationships is the user-defined objective function. For the matrix-vector
inherently defined among ihe members of each group. example, a set of 4 (symmetric) optimal schedules is found

Architectural explorat'on involves mapping each such after exploring less than 100 partial designs. Each such
group into the space-time lattice in a way that ensures schedule has 2 associated consistent embeddings. Corre-
that the spatial relationships established within each sponding RTL implementations (obtained after localiza-
group are maintained. Akffine transformations are used tion and projection of the embedded DGs) are shown in
to perform this mapping'. The use of these transforms Figure 3.
provides a constrained moved set for the architectural ex-
ploration, ensures that desired spatial relationships are
preserved, and finally guarantees that the schedule asso-+

ciated with each group will be an affine function of spatial
location. The node groupings for the example and one set
of affine mappings is shown in Figure 2. +

A b x

T Figure 3: Two RTL-Level Implementations6

DESCARTES is implemented in Common Lisp and is
S/•5 operational through the embedding phase. Final map-

ping to RTL has not yet been implemented. The program
S-has derived architectures for image and signal processing

-- as well as non-numeric applications, and it efficiently ex-
plores design spaces in excess of 1012 points.

References

S- s [1] J.A.B. Fortes, K.S. Fu, and B.W. Wah. Systematic
Design Approaches for Algorithmitally Specified Sys-

Figure 2: Similar Node Groupings and One Affine Em- tolic Arrays. In V.M. Milutinovic, editor, Computer
bedding in Space-Time Architecture: Concepts and Systems, pages 454-494.

North-Holland, New York, New York, 1988.
Efficient architectural exploration is achieved by sepa-rating the scheduling and allocation aspects of the search. [2] S.V. Rajopadhye and R.M. Fujimoto. Synthesizing

The different characteristics of scheduling and allocation Systolic Arrays From Recurrence Equations. ParallelThe iffren chractrisicsof cheulin an alocaion Computing, 14, No. 2:163-189, June 1990.
make a partitioned search much more efficient than a
naive exploration of different embeddings. While the ef- [3] Y. Yaacoby and P.R. Capello. Converting Affine
fect is the same as a combined exploration, the search is Recurrence Equations to Quasi-Uniform Recurrence
structured in a way that allows the scheduling and allo- Equations. In VLSI Algorithms and Architectures -
cation phases to be performed largely independently. Proceedings of the 3rd Aegean Workshop on Comput-

5 An affine transform is a vector function of the form f(z) = ing, pages 319-328, 1988.
Ax + b where A is an S x R matrix and b is & constant vector. Since
in this context the function must map ZR - Zs, A is restricted to 'The implementation on the right corresponds to the embedding
be an integer matrix and b is restricted to be in Zs. in Figure 2.

4-2



Managing Storage for Multithreaded Computations

Robert Blumofe
MIT Laboratory for Computer Science

Cambridge, MA 02139
rdbQtheory. ics.mit. edu

In a multithreaded computation, the dynamic scheduling of threads dramatically impacts both
the running time and memory usage. The effect of dynamic thread scheduling is most apparent
in systems that support nonstrict semantics such as dataflow and futures, because threads execute
based on the availability of data. The effect is also apparent when threads can stall due to the long
latency of remote loads or loads from shared memory. In light of this dynamic behavior, a scheduler
trying to execute a computation quickly often tries to expose as much parallelism as possible by
keeping as many threads active as possible. Unfortunately, each active thread makes a claim on
memory for an activation record, and therefore aggressively trying to expose parallelism may place
excessive demands on memory capacity. We consider the problem of dynamically scheduling threads
to expose sufficient parallelism for optimal speedup while not exposing more parallelism than the
memory system can handle.

To formalize our goals, we consider the time and space used to execute a multithreaded compu-
tation with one processor. We assume the processor executes a single instruction at each time step,
so the execution takes time T1 equal to the total number of instructions executed. In considering
the space usage, we only count the memory used for stack-based storage, and we assume each acti-
vation record takes unit space. Therefore, the execution takes space S1 equal to the maximum stack
depth. With p processors, Brent's Theorem guarantees that any scheduling policy that uses proces-
sors in a greedy fashion (never idling a processor unnecessarily) executes in time T. :_ Ti/p + To,
where To, is the running time in an execution with an infinite number of processors. This bound
is within a factor of two of optimal, since both Ti/p and To, are lower bounds on the running
time. We consider a p-processor execution with T. proportional to Ti/p + To to be time efficient.
What about space? What should we consider to be space efficient? When a processor executes
a particular thread, it requires a context equivalent to the contents of the stack at the time that
thread was executed in the single-processor execution. Therefore, we allow each processor to use
as much memory as the single processor used, and we consider a p-processor execution with space
usage S. proportional to Ssp to be space efficient.

We would like a scheduling algorithm that can execute any multithreaded computation efficiently
in both time and space, but our first result states that no such algorithm exists. In particular, for
any number p of processors, there exists a multithreaded computation such that any schedule with
T, :_ a(T1 /p + T.,) and S, <_ /3(S1p) must have a/3 = fl(vI/l/p). In other words, there exists
a multithreaded computation for which any schedule giving efficient space usage must give poor
speedup and any schedule giving efficient speedup must require excessive space usage.

In light of this lower bound result, we consider scheduling algorithms for special cases of mul-
tithreaded computations. We give efficient scheduling algorithms for computations having a strict
semantics for procedure invocation, and we use this result to give a technique for handling nonstrict
procedure invocation. This latter result requires some care, since when space is bounded, invoking

This research was supervised by Professor Charles E. Leiserson and was supported in part by the Defense Ad-
vanced Research Projects Agency under contract N00014-91-J-1698 and by a National Science Foundation Graduate
Fellowship.

5-1



procedures before their parameters have been computed can actually result in running times that
are slower than when procedures always wait for their parameters.

We derive these results from our model of a multithreaded computation as a directed acyclic
graph in which each node represents a unit length task and each edge represents an ordering between
two tasks; see Figure 1. The size of the computation (the number of tasks) is TI. Any execution
of the computation must observe the ordering imposed by the edges: for any pair of tasks u and v,
if there is a path from u to v, then task u must execute before task v. We define the computation
depth as the length of the longest path in the computation, that is T,,.

: ............... •••• :::::::::::::::::::::::::::::. : ..... ...............::::::::::::::::::

& .........:.::.::.::.:;.

.......... ................ ........

Figure 1: A multithreaded computation. Continue edges are dashed, spawn edges are thick, and
data edges are thin. The threads are shaded. This computation has size T, = 21, tree depth S1 = 3,
and computation depth T,, = 12.

We partition the edges of the computation into three types. The continue edges impose the
intra-thread ordering - these are the dashed edges in Figure 1 that form each thread (shown
shaded) into a linear order. The spawn edges represent the invocation of a thread by some task
in another thread. Collapsing each thread into a single node and connecting the threads by the
spawn edges produces a rooted tree of arbitrary degree called the invocation tree. We define the
tree depth of the computation as the depth S, of the invocation tree. Lastly, the data edges enforce
the ordering required by producer/consumer relationships. If task u computes a value z and task
v uses x, then a data edge from u to v ensures that task v executes after task u.

Our scheduling algorithms are all based on depth-first priority, where the depth of a task is the
depth of its thread in the invocation tree. With a global depth-first priority queue, the resulting
synchronous algorithm efficiently schedules multithreaded computations having strict procedure-
invocation semantics. For this global depth-first algorithm we show Tp = O(T1 /p + To) and S, =
O(Sip). By incorporating a randomized load-balancing technique, we replace the global queue
with p local queues - one per processor - to produce a semisynchronous algorithm. For strict
computations, we show that this local depth-first algorithm has a guaranteed space bound of
Sp = O(Szplgp) and a high-probability time bound of T. = O(Tl/p + T,, lg p + (lg T1 )(lgp)). This
time bound for the semisynchronous algorithm gives linear speedup (with a small constant factor)
whenever two conditions hold: The computation is reasonably large compared to the number
of processors (TI / Ig T, = fl(p lg p)), and the average available parallelism has at least lg p slack
(T1/T., = fl(plgp)). For these reasonably large and parallel multithreaded computations, if the
memory capacity scales sufficiently to incorporate Ig p slack, the local depth-first algorithm almost
surely executes with linear speedup.

References

[11 Robert Blumofe and Charles E. Leiserson, "Managing Storage for Multithreaded Computa-
tions," in preparation.

5-2



Clay-i: A Distributed Bit-Parallel Computer

Mike Bolotski
misha~ai .mit. edu

MIT Al Lab
703 - 545 Technology Square, Cambridge, MA 02139

Introduction Architecture

The core of the architecture is the small, massively
replicated processing element. Each PE contains 64

We're working on a massively parallel SIMD corn- bits of dual-ported memory arranged in two banks,
puter for early vision tasks. We call this VLSI-based two 3-input ALUs, and 4 NEWS communication reg-
very fine-grained malleable architecture the Clay ma- isters. Each At,( can access two bits from its associ-
chine. The central idea of the architecture is to max- ated memory bank and one from the other bank. In
imize the number of bits transformed in each cycle, effect, this the first "super-scalar" bit-serial proces-
To do this we place as many processors on a chip as sor
possible. We believe we can produce a chip which can
transform 3200 bits per cycle. In contrast, a CM-2 The PEs are connected in a circuit-switched mesh-
processor chip operates on 16 bits, and a conventional with-bypass network. The bypass enhancement to
RISC processor on at most 64 bits at once. the mesh allows the powerful capabilities of binary

tree embedding and one-to-many broadcast, and only
minor circuitry is required for its implementation. A

The Clay architecture consists of one-bit processors, slight delay is still incurred at each bypassed PE due
connected in a mesh-with-bypass network. The indi- to this circuitry. As a result, communication time is
vidual components are mostly conventional, and the still proportional to distance but the constant is suf-
architecture could easily be misinterpreted as yet an- ficiently small so that local communication occurs in
other bit-serial mesh machine. The distinctions are unit time.
subtle, but result in a significant performance advan-
tage over bit-serial systems.

Arithmetic Algorithms

The key observation is that typical bit-serial proces- This subsection describes some important arithmetic
sor elements (PEs) dedicate much more silicon area
to memory than to processing. The idea of the Clay operations: Thift, accuoulsate, compare, add, and
architecture is to replace a single PE with a large multiply. The first two use only nearest-neighbor
memory by several of PEs with smaller memories, connections; compare uses the bypass to broadcast;
and allocate a PE to each bit of a word. As a result,
the entire data word can be transformed in parallel,
increasing the performance by a factor equal to the
word length, with only a small increase in area. Con-
sider a PE with 512 bits of memory and a minimal
one-bit ALU whose area equals that of 32 memory
bits. A group of 16 smaller PEs with 32 bits of mem-
ory each, requires only twice the area of the original
PE, while delivering as much as 16 times the perfor-
mance. 4 5m

We call this data organization distributed bit-parallel
(DBP), as each data word is distributed among a
group of PEs, and is operated on in parallel. Such a ..
group operating on a single word is called a cluster.
Cluster organization is purely a software construct,
and the PEs can be grouped to manipulate data of
various word sizes.

Acknowledgments: This work is conducted under the direction of Professor Thomas Knight Jr. This research is supported in part
by the Defense Advanced Research Projects Agency under contract N00014-87-K-0825 and the National Science and Engineering
Research Council of Canada.

6-1



A cluster is organized in row-major order, as shown mesh of clusters. These algorithms operate very ef-
above. Every fourth PE in a row is connected to the ficiently since data is communicated over the wide
PE one row below and four columns to the left. As data bus formed by a cluster.
long as the horizontal dimension of the cluster is four,
logically adjacent bits are also electrically adjacent. Routing Operation The well-known bitonic sort
Throughout all these algorithms, the cluster can be algorithm operates efficiently on the architecture, and
considered to be organized as a line. can be used as the building block for a routing prim-

itive. A sort can implement routing by using the
Shift. The simplest DBP arithmetic operation is destination cluster ID as the sort key. A full bitonic
the shift. Each processor simply replaces its bit with sort of records with a 16-bit key and a 16-bit datum
a neighbor's. In the case of logical shifts, the MSB on a 64K processor machine requires approximately
or LSB must be cleared; for arithmetic shifts the 30,500 cycles. For technologically and financially fea-
MSB must be retained, which requires an extra cycle. sible machine sizes, the algorithm can operate faster
Since the clusters are rectangular, shifts by a multiple on the Clay mesh than on a bit-serial hypercube ar-
of the row size are fast since the bits need only move chitecture due to the wider data path and faster local
vertically. Thus, a shift by 9 can be accomplished by operations.
two vertical shifts by 4, followed by a conventional
horizontal shift by 1. Scan Operations The parallel prefix operator can

be implemented efficiently on any network that al-
Accumulate. The sum of a sequence of n numbers lows embedding of binary trees. Since the mesh-with-
can be evaluated in e(n) cycles with the carry-save bypass architecture provides a fast broadcast capa-
adder (CSA) technique, which computes the sum and bility, it can implement the Ladner-Fischer parallel
carry bits separately for each addition. The com- prefix algorithm. Unlike tree-based scan algorithms,
putation is purely local, and therefore independent which perform an up-sweep to propagate information
of word size. Many computations which are usually from the leaves to the internal nodes, and then a
thought of as additions can be reformulated as accu- down-sweep to send global information down to the
mulations. As a result, the speed of operations such leaves, the LF algorithm performs only a forward
as region summing, counter updating, or multiplica- sweep. As a result it is both faster, and consumes
tion is improved, less memory storage than tree-based scans.

Compare. The comparison algorithm takes advan- Conclusion
tage of the bypass capabilities of the network. It is
based on the observation that the most significant Based on a preliminary processor design, we estimate
differing bit (MSDB) between two words determines that 1600 PEs can fit on a single IC implemented in
which word is greater. Thus, A > B when the MSDB a 1.0 micron technology. Since each PE is very sim-
is 1. The algorithm is straightforward: all PEs with pIe, requiring approximately 8 gate delays per cycle,
identical bits bypass themselves and then send the clock rates of 125 MHz should be easily attainable.
value of their bit of A up to the MSB. If the MSB A summary of expected performance of a single IC
receives a 0, then A is smaller then B, otherwise A is on various computations is shown below.
greater. Operation 8-bit 16-bit 32-bit

MOPS MOPS MOPS
AAd 1670 700 360Add. The idea of the well-known logarithmic-time Shift 12500 6250 3125

algorithm is to "look-ahead" at the carry by com- Accumulate 8300 4150 2075
puting the eventual carry into each one-bit adder. It Move 8300 3125 1040
turns out that the carry ch into the adder computing Compare 3600 1390 480
bit k can be expressed as ck+1 = gk +phck, where gk Multiply 32
is the generate bit and pk is the propagate bit. The
computation of p and g can be expressed in parallel
prefix form, and the carry can thus be computed in References
logarithmic time.

[1] M. Bolotski. Distributed Bit-Parallel Architec-

Communication Algorithms ture and Algorithms for Early Vision. Mas-
ter's thesis, University of British Columbia, Aug

Inter-cluster operations on the Clay architecture are p9o.

much faster than on conventional bit-serial grid ar- [2] Power Efficient Computation with Distributed
rays. The bypass mechanism allows logarithmic-time Bit-Parallelism. DARPA Proposal, BAA92-03,
algorithms by embedding a regular binary tree in the Embedded MicroSysterns

6-2



Migration in Distributed-Memory Multiprocessors
Eric A. Brewer*

Parallel Software Group
brewerrlcs.mit.edu

Process migration has been used to improve load bal- The primary problem involves references to the object.
ancing, overall performance, and availability [Dou90]. References that are local addresses become invalid when
The vast majority of work in this area involves the mi- the object moves, thus all such addresses must be located
gration of Unix processes in distributed systems. This and updated. We use a combination of residence checks
paper examines the problems of thread and object mi- and globally unique object identifiers (OlDs). Thus, a
gration in homogmeous multiprocessors. local invocation consists of a residence check followed

After comparing migration in distributed systems and by a dereference of the local address. If the object is
multiprocessors, we discuss the issues involved in migrat- not resident, the caller computes the object's new home
ing idle objects, followed by the additional problems for from its OID and performs a remote invocation. The
migrating objects with active threads. We then intro- techniques presenced so far are well established and have
duce a novel invariant that reduces the impact of mi- been implemented in Emerald [JLHB88]. Unlike Emer-
gration on normal-case (non-migrating) code. We also aId, we will (essentially) eliminate the residence check on
present two novel mechanisms for frame migration, dis- architectures with tag bits by causing a trap on access
cuss their performance, and summarize our current sta- to objects that are no longer local.
tus.

3 Migrating Active Objects
1 Migration in Multiprocessors The addition of active threads severely complicates

The primary goal of a migration mechanism is min- migration; in particular a method must be able handle
imal impact on the performance of objects that do not the migration of its object in the middle of the code, not
migrate. We expect migration to be rare but helpful; just at the beginning or end.
migration is useful primarily for active long-lived ob- The last item we borrow from Emerald is the Object-
jects that would provide less competition for resources Frame Invariant: an object and a frame for a method of
if moved elsewhere. For example, if two such objects that object must be in the same address space. This in-
share a processor it is worthwhile to move one of them variant allows the code of the method to access the object
to an idle processor. using pointers and without using residence checks. With-

A fundamental concept is the notion of location trans- out this invariant, the normal-case performance would
parency, which is the property that the same code can deteriorate severely.
run on any processor. Code that uses addresses spe- A corollary of this invariant is that methods cannot
cific to the current processor is not location transparent. directly access the slots of another object.1 Without this
Its addresses must be translated into corresponding ad- corollary, if a method had pointers to three objects and
dresses on the new host. one of them changed address spaces, then the frame and

With the exception of Emerald [JLHB88], all of the the other two objects would also have to move. This
previous work on migration assumes either a global ad- could lead to a severe domino effect. Thus, a method
dress space with caching, hardware support for virtual directly accesses the slots of "self", but indirectly ac-
memory, or both. We can make neither of these assump- cesses the slots of other objects so that it need not be
tions, both of which lead to solutions that provide loca- in the same address space. Relaxing this invariant is an
tion transparency for free. We also can not assume the area of future research; e.g., an object can directly access
existence of hardware tags or full/empty bits, although another if it "pins down" the object during the accesses.
we will exploit them when available. 4 Migration Points

2 Migrating Idle Objects We introduce a novel invariant: An object cannot mi-
For objects without active threads, there are two con- grate unless all of its threads are at migration points. A

cerns, migrating the data and ensuring that all refer- migration point is simply a point in the code at which
ences to the object remain valid. Moving the data is the object is allowed to migrate. This invariant improves
quite simple; the only complication is translating any performance because code can assume that its object will
local addresses. not migrate between migration points, so it can use point-

"Eric Brewer is supported by an Office of Naval Research Fel- ers arbitrarily in these regions. Such pointers become
lowship, and is a member of Bill Weihl's Parallel Software Group. invalid across migration points if the object migrates.
Additional support provided by the National Science Foundation,
grant CCR-8716884; by DARPA, Contract NO0014-89-J-1988; and In some languages, methods can access the slots of objects of
by an equipment grant from Digital Equipment Corporation. the same type (in addition to "self").

7-1



An implication of this invariant is that migration may jai fib
be delayed. To prevent unbounded delay, we ensure that y: add $2,4
migration points are relatively frequent. For example, sW $2,4 (sp)
all synchronization points are migration points so that if 11 . jr $31
a method gets blocked due to synchronization, its object
is free to migrate.

In general, crossing a migration point requires verify- F V-..gi fixup
ing that the object has not migrated, and migrating the l
frame if it has moved. The challenging part of migra- bra y
tion points is reducing the cost of crossing one when the
object does not migrate.

The first approach to this problem is to hide the ver- r 1) get rip
ification of no movement in the first pointer dereference
after the migration point. Thus, if the object has not 2) locate fix-up block

migrated the dereference behaves normally, while if the 3) adjust rip
pointer is invalid a trap occurs that updates the state of
the method to reflect the new home of the object.

The trap code is fairly complicated. First, it must de-
duce the intended object and the offending frame. Next, Figure 1: This figure depicts a portion of a stack with
it uses a hash table to locate the fix-up block for that the rip for the middle activation record being updated
migration point. A fix-up block is a piece of code that to point to the corrsponding fix-up block.
knows the layout of the frame and the register usage at
the point of the trap. The first thing the fix-up block out over time and amortizing some of the cost across
does is move the frame to the new host. It then adjusts multiple migrations.
the values of saved registers and pointers in the frame
that contain local addresses to contain the correct ad- 6 Conclusion
dresses for the new host. Finally the fix-up block jumps We are currently generating the code required to sim-
to the instruction that caused the trap, which causes the ulate migration points, fix-up blocks and frame patching.
method to restart from the failed dereference. Since all The PROTEUS simulator will allow us to determine the
of the local addresses have been updated the code con- effectiveness of these options both in terms of the cost
tinues without a hitch. of migration and the impact on non-migrating objects.

The fix-up block is generated automatically by the Open questions that we hope to resolve include how long
compiler. The current plan is to generated a specialized an object should live before it is considered for migration,
fix-up block for each migration point, although it may how frequent migration decisions should be, and what is
be possible to generate one fix-up block per method. the right information on which to base those decisions.

This work examines migration in distributed-memory
5 Frame Patching multiprocessors and addresses different problems than

On some architectures, it is not possible to force a those of Unix-based migration. The contribution of this
trap on the next access to a location. For such architec- work includes the development of migration points, fix-
tures, we propose an alternative mechanism called frame up blocks, and frame patching.
patching. The first point to note is that when an oh- The invariants we define, combined with low-cost

ject (locally) decides to migrate, all other frames on the mechanisms for the common case that objects do not

processor are suspended, since only one frame runs at a migrate, should lead to a run-time system that com-

time. Each frame has a saved program counter, called hines the resource-balancing benefits of migration with

its return instruction pointer or rip. the high performance of direct access to the fields within

The basic idea behind frame patching, shown in Fig- an object.
ure 1, is to update the rip of all of an object's frames so
that they point to a fix-up block. Since each frame must Acknowledgements: Thanks to Bill Weihl, Anthony
be at a migration point for the object to migrate, there Joseph and Carl Waldspurger.
is a valid fix-up block for every such rip. Thus, when
the frame becomes active it will execute the fix-up block [Dou9O] F. Douglis. Transparent Process Migration in the
before continuing with the rest of the method. As before Sprite Operating System. PhD thesis, University of
the fix-up block ensures that all local pointers have the California At Berkeley, Technical Report UCB/CSD
correct value for the new host. 90/598, September 1990.

[JLHB881 E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-
Finally, we have developed algorithms that perform grained mobility in the Emerald system. A CM Trans-

frame patching lazily, thus allowing the cost to be spread action, on Computers, 6(l):109-133, February 1988.

7-2



Improving the Performance of Cache Memories Without
Increasing Cache Size or Associativity

Nicholas Carter (npcarterxai.mit.edu), NE43-611

June 24, 1992

Studies have shown that increasing the sise ins strategy that made use of the expected
and/or associativity of traditional cache de- behavior of the load with update and store
signs becomes less effective as the size and as- with update instructions that are implemented
sociativity of the cache increase. In particular, in the POWER architectures. These instruc-
once a cache has reached 32-128K of memory tions calculate the address for a memory ref-
in size, and four-way set-associativity, the de- erence by adding an offset to the contents
crease in average memory access time gained of a register, and then store the result of
by increasing the sise or associativity of such that computation back in the register, making
a cache becomes extremely small. them very useful in cases where a succession

This abstract describes four proposals for of equally spaced memory locations are to be
improving the performance of a cache memory read. Based on this predicted use of these in-
without increasing its sise or associativityl In structions, it was theorised that implementing
order to determine the effectiveness of imple- a system to prefetch the data that would be re-
menting these proposals, a trace-driven simu- quired if a given instruction of this type were
lator was implemented which took instruction executed a second time after fetching the data
traces of program execution on a RISC Sys- required for the first execution would improve
tem/6000 computer as inputs and predicted performance. Unfortunately, simulations pre-
the number of cycles that would be required dicted that this modification would result in
to execute the program that generated the a performance degradation of about 4%, pre-
trace if it were run on an actual machine. The sumably because much of the prefetched data
SPEC benchmarks were selected as the source was removed from the cache before being used.
of the traces to be simulated. Approximately The second proposal involved allowing the
100,000,000 instructions were traced from each cache to interrupt the process of bringing a
of the ten SPEC benchmarks, resulting in ap- cache line into memory to satisfy a miss which
proximately 1 billion instructions being simu- occurred while the line was being fetched.
lated to test each of the methods. Since the RISC System/6000 fetches the da-

The first method studied was a prefetch- tum required to satisfy a cache miss first from
the main memory, this results in not fetch-

'This wrk was canied out at IBM's Yorktown and ing data that will probably be used in order
Hawthorne research sites, while I was an intern at IBM to fetch data that is definitely needed more
as p•rt of the VI-A program. Funding was provided
by the salary paid me by IBM and other perswAl re. quickly. This resulted in a 2.9% improvement
ources. Tom Knight supervised this research, in performance overall, although performance

8-1



was reduced by 3.6% on the "dnasa7" bench- than that of the original machine, making the
mark. use of direct-mapped caches attractive because

Another idea involved the use of a "load of the shorter access times that are possible
history table" to store data about how of- with such a cache.
ten cache lines are used before being replaced Increasing the size or associativity of the
in the cache. Whenever a load or store in- cache in a machine like the RISC System/6000
struction is executed, the load history table is produces only very minor improvements in
checked to determine if that instruction has performance. (.2% performance improvement
been executed before, and whether or not the from doubling cache size, and .05% improve-
cache line referenced by that instruction the ment from doubling associativity) All of the
last time it was executed was used enough to proposals that were found to improve the per-
merit bringing the entire line into the cache. formance of the machine resulted in greater
The use of a load history table was found to performance improvements than traditional
increase the performance of the machine by methods of improving cache performance, and
slightly more than 4%, depending on the sise should require less hardware investment, sug-
of the history table, and to improve the perfor- gesting that methods such as these should
mance of the machine on all of the tests that be considered in order to improve the perfor-
were run. mance of future architectures.

The final proposal that was examined was
the use of a "victim cache", as proposed by
Jouppi2 . A victim cache is a small buffer of
cache lines that is used to store cache lines that
have been thrown out of the main cache, so
that they may be accessed more quickly than if
they were returned to the main memory. This
r. .uces the performance impact of reducing
the associativity of the main cache. The sim-
ulations that were run assumed that the 64K,
four-way set-associative cache that is currently
implemented in the RISC System/6000 was
replaced with a direct-mapped cache contain-
ing the same amount of memory and a victim
cache of varying sise, with a one-cycle penalty
being incurred when a needed line was con-
tained in the victim cache. Going from a set-
associative to a direct-mapped cache reduced
the performance of the machine by approxi-
mately 8%. Adding a victim cache resulted in
a machine with performance .5%-1.1% better

2 No*m=a P. Jouppi. Impgovhg d mect-apped
cache per(umance by the addition of a mall fuly-
auociative cache and prefetch bufferm. In Proceeuding
of the 17hA Annueal Sympeoium en Cemputer Archi-
teetur, pag 364-372, 1990

8-2



Multi-threaded Compilation of Id Programs

Yonald Chery1

MIT Computation Structures Group
NE43-202

yonald@whopper.lcs.mit.edu

I am currently implementing compiler analysis techniques [5] [6] for compiling Id, a non-
strict functional language [2], which is expected to dramatically improve code performance
for multi-threaded machines such as Monsoon [4] and *T [1].

Instead of values communicated via tokens flowing along arcs between instructions, the
multithreaded model views computational progress as the run-time scheduling of interacting,
multiple instruction sequences called threads, each of which is identified and scheduled at
compile-time [3]. These threads make use of the context frame to pass data between instruc-
tions as is done in von-Neumann machines. Communicating values across threads sharing a
context is also done using frame locations. The creation and initial execution of threads is
accomplished through the use of fork and join instructions, which start new threads and
synchronize the completion of threads, respectively. Such a computational model efficiently
executes programs which yield long threads with little required synchronization.

In contrast, Id makes finding long threads difficult due to non-strictness. Consider the
following example from [5] in figure 1. The figure shows the definition and two different
invocation of procedure f (each in a "letrec" block of mutually recursive bindings).

Sa = f yy 3; a = f 3 yy;de ffx y =ytia yhaa

cons (x + 2) (y + 3); YY - tail a; yy - head a;... I ... I

(a) (b) (c)

Figure 1: Use of non-strictness in Id programs

Depending on the invocation, the multiplication can either precede the addition (as in
figure ib) or vice-versa (as in figure 1c). As a result, both sub-expressions must be evaluated
in separate threads and scheduled at run-time.

The compiler analysis techniques implemented provide improved methods for group-
ing instruction into larger partitions (code DAG's which ultimately become compiled as
threads through standard code generation techniques), reducing the control flow depen-
dencies between partitions, and performing global analysis that can be extended for doing
inter-procedural analysis.

'Research supported by GEM Masters Fellowship and through ONR Grant No. N00014-89-J-1988 and
supervised by Professor Arvind.

9-1



Local partitioning consists of repeated, alternating passes of grouping instructions within
a dataflow program graph 2 basic block according to their input and output dependencies
until no further progress can be made. Global analysis consists of propagating information
across basic block boundaries to improve the partitioning of a caller or callee block. Local
partitioning and global analysis are alternated until no further improvements can be made.

Once partitioned, dataflow arcs between partitions are converted to control flow arcs
by inserting frame-store and frame-fetch instructions in the producing and consuming
partitions, respectively. Redundant control flow arcs in the partitioned graph correspond
either to fanout trees in the original dataflow program graph or from multiple values being
communicated between two partitions. Removing these redundant arcs reduces the amount
of forking and joining performed at run-time.

Current work involves developing a new compiler intermediate representation to better
expose control flow and support global analysis. Preliminary results using test cases shows
these techniques to be successful in identifying large partitions. This research is intended
for eventual use in the Id Compiler for *T, a multi-threaded hybrid von-Neumann/dataflow
machine currently being developed by CSG and researchers at Motorola Cambridge Research
Center.

References

[1] R. Nikhil, Arvind, G. M. Papadopoulos. *T: A Multithreaded Massively Parallel Archi-
tecture. In Proceedings of 1 yh Annual International Symposium on Computer Architec-
ture, pp. 156 - 167, May 1992.

[2] R. Nikhil. Reference Manual for Id 90, Computation Structures Group Memo 284-1, Dept.
of Electrical Engineering and Computer Science, Massachusetts Institute of Technology,
Cambridge MA, September 1990.

[3] G. M. Papadopoulos, K. R. Traub. Multithreading: A Revisionist View of Dataflow
Architectures. In Proceedings of 18 h Annual International Symposium on Computer Ar-
chitecture, pp. 342-351, IEEE, May 1991.

[4] G. M. Papadopoulos. Implementation of a General Purpose Dataflow Multiprocessor,
Technical Report LCS/TR-432, Dept. of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, Cambridge MA, August 1988.

[5] K. R. Traub. Multithreaded Code Generation for Dataflow Architectures from Non-
Strict Programs. In Functional Programming Languages and Computer Architecture '91,
Volume 523 of Lecture Notes in Computer Science, pp. 73-101, Springer-Verlag, August
1991.

[6] K. R. Traub, D. E. Culler, K. E. Schauser. Global Analysis for Partitioning Non-Strict
Programs into Sequential Threads, In Proceedings of ACM Conference on LISP and
Functional Programming, June 1992.

'Dataflow program graphs serve as the compiler's intermediate representation.

9-2



Frame Memory Management for the Monsoon Processor'

Derek Chiou
2

Multiprocessor architectures require some sophisticated, yet fast memory management prinri" iyes to sup-
port procedure calls in high level languages. These primitives serve two intertwined pur:Joses - allocation
of activation area, called a contezt or a frame, for an iteration of a procedure, i.rd, since a pointer to
a frame contains a processor number, distribution of work across the nodes of the multiprocessor. We
describe an activation frame memory management system, its implementation, and results.

1 Activation frames on Monso..n

Allocating and deallocating fr&m•es for pa,. 'lel computing is not as easy for sequential computing. Since
a procedure may have multiple jutstanding calls to other procedures, we wind up with a tree of activation
frames. Parallel frame! allocation is a mix between stack and heap allocation on a sequential computer.
A full implementatic of T -' :allel frame manager would essentially be a heap manager, including all of
the associated complexity. We similify the problem by rest- - ýg the number of different sizes a frame
can be to allow the frame allocator to run much more q; ckly. This constraint greatly simplifies the code
of our frame manager, thus increasing its steed.

Moil )..,-j takes the position that a single frame must exist on a single processor. Thus, work is
d-•idCt °- meen pr .:essors at a procedural level The fra-e allocator will, therefore, partition work
'.1 Oss essors by now it handles requests for frames. We consider load distribution/balancing as an
i.nporta part of fram!. allocation.

2 Frame managers for Monsoon

Over the course of the past year, we have examined many different frame managers. We have two
currently being researched. One has been heavily optimized by code duplication to avoid unnecessary
run-time evaluation. The other is far more complicated since it implements a deferred coalescing buddy-
system. All frame managers are written in MONASM[3], our assembly language, for optimal speed.

Both frame managers use approximately the same algorithm, quick-fit, for frame allocation. When a
frame is requested, the correct quick-list is checked for a frame. If there are no frames on the correct
quick-list, the algorithm attempts to allocate a frame from the tail of the frame memory. If there is not
sufficient memory in the tail to allocate a frame of the desired size, the algorithm looks for a frame larger
than the desired size. If a frame of a larger size is not found, behavior between the two frame managers
differs. The first frame manager, rtsinlin,d , will return an error and halt the machine while the other
frame manager, 7"asoolds, , will attempt to coalesce the frames. Both frame managers do remote frame
management, that is, the processor on which a frame resides manages that frame. If processor Pi desires
a frame from Pj, Pi must send a request for a frame to Pj.

I Supervisor: Prof. Gregory M. Papadopoulos. Funding is provided in p .rt by the Advanced Research Projects Agency

of the Department of Defense under Office of Naval Research contract N00014-89-J-1988.2 Offce: NE43-203. Email: derekQabp.cs.mit.edu

10-1



IProgram ipe I 2pe I A p

GAMTEB 1 1.96 3.86 7.44
PARAFFINS 1 1.95 3.52 5.52
SIMPLE 1 1.87 3.48 6.21
MATRIX-MULTIPLY 1 1.99 3.87 7.23

Table 1: Speedup on Monsoon Hardware

3 Load distribution and parallelism

As noted earlier, load distribution is an important part of frame allocation. Load distribution is the
partitioning of work to different processors and is a significant problem for parallel machines. The think-
ing in our group has been that dataflow exposes so much parallelism that a simple and approximately
random load distribution scheme, though it might be somewhat unbalanced, should be able to keep all
processors reasonably busy.

On this thinking, and after experimenting with a few other options, we arrived at a simple round-robin
scheme to distribute work across all the processors. Every processor has its own set of round-robin
counters and each frame size has its own round-robin counter. The load balancing scheme works well
with all of the benchmark programs we have run so far.

4 Current Results and Future Work

We have been running an early version of 'tasni,.d on Monsoon hardware and simulators for several
months. It is very robust and easy to use. Its speedup performance is shown in Table 1. GAMTEB and
MATRIX-MULTIPLY speed up very nicely. SIMPLE seems to lock up the machine on anything but
modest loop bounds, strangling the amount of parallelism we can exploit and destroying our speedup.
We are looking into this problem. Currently, we feel that there is a lack of parallelism in PARAFFINS,
limiting its speedup. •tsnu,,,d is about 30% faster than its earlier version. Frame management
overhead is completely dependant on the program being run. It ranges from virtually nothing for
MATRIX-MULTIPLY to around 13% for SIMPLE and GAMTEB and about 30% for PARAFFINS.

We believe that we have achieved the objective of building an efficient frame manager for Monsoon.
Future work includes evaluating the performance of the frame manager for larger machine configurations
and exploring further modifications to the frame manager for additional speed.

References

[1] M. J. Beckerle. Internal design for mint. Technical report, Motorola, Inc., Cambridge MA, Oct 1990.

[2] D. E. Culler and G. M. Papadopoulos. The explicit token store. Journal Of Parallel and Distributed
Computing, 10(4):289-308, 1990.

[3) K. R. Traub. Monasm reference manual. Technical Report MCRC-TR-5, Motorola, Inc., Cambridge
MA, Apt 1990.

10-2



RM.I.T.
TRANSIT

CT) PROJECT

Reconfiguration of Multipath MIN Architectures

Fred Chong
MIT Artificial Intelligence Laboratory

itchongoai,.mit.edu

As the number of components in large-scale multipro- inition of a blocked router: a router is blocked if it is
cessors becomes large, the fault tolerance of such ma- faulty or if any of its logical directions leads to only
chines becomes increasingly important. We examine blocked routers. This definition of blocking is prop-
methods of reconfiguring a multiprocessor which has agated stae-by-stage backward from the last stage
suffered faults in its interconnection network. We con- to the first stage of the network. Any processing
centrate upon the decision of which processing nodes node which is connected to only blocked routers is
should be used and which nodes should be shut down. shutdown in the reconfiguration. Fault-propagation ix
Due to their high fault-tolerance, we focus upon archi- conservative because it discounts the utility of blocked
tectures which use multipath multistage interconnec- routers. A blocked router is not necessarily useless.
tion networks (multipath MINs). Multipath networks It may still have many usable channels.
have multiple paths between any input and any out-
put. The routers used to construct these networks We compared fault-propagation to a non-conservative
are characterised by radix and dilation. The radix of multi-hop algorithm. The multi-hop algorithm shuts
a router refers to the number of logical directions the down processing nodes only when absolutely neces-
router switches to. The dilation of a router refers to sary - when a node has no surviving input or out-
the number of redundant channels in each of these put connections to the network. To allow communica-
channels. tion between all nodes, a multi-hop system must allow

n imessages to be routed through intermediate destina-An important multipath MIN is the randomly-wired tions. Figure 2 shows our simulation results for both

multibutterfly, shown in Figure 1. Multibutterlies reonFigurato stags our results s ow tath
havebee shwnin teor, t posesssubtanial reconfiguration strategies. Our results show that the

have been shown, in theory, to possess substantial the conservative fault-propagation criterion produces
fault tolerance and performance [Upai9]. Leighton the best performance. Synchronisation requirements
and Maggs (LM92] used a fault-propagation reconlig- of applications make it critical to eliminate nodes with

uration algorithm to prove that no matter how an

adversary chooses k routers to fail, there will be at poor network connections.

least N - 0(k) inputs and N - 0(k) outputs between Further details of our work are available in [CK92].
which permutations can be routed in 0(log N) router We examine another class of multipath networks,
cycles, for an N x N network. the nauimalmfanout networks. We present an f)(ni)

However, these asymptotic results do not guarantee lower time bound for a worst-cast. permutation these
that fault-propagation is a practical algorithm for networks. We further show how a randomized ap-
reconfiguration. In fact, the algorithm initially ap- proach avoids this wont case. We show empirically
peared too conservative to use in practice. Fault- that maximal-fanout networks perform just as well as
propagation centers upon the following recursive def- randomly-wired multibutterflies.

References for routig arud faults in multibutteuies and
randomly-wined splitter networks. 1335 Tractis

(CK92J Predeaci T. Chong and Thomas F. Knight, Jr. Deigm nn Ceomputin, 41(g):1-10, May 1992.
and performance of multipath MIN architectures. In
Symppesim on Paallel Are•itetufto and Al g1eita4 (UpfwJ . UIn L An 0. N) dst.-lACM poak t routngace.. Ins Uat Annual ACM• Spapsspom ens Tee pr
San Diego, Califraia, June 1992. ACM. To appear. ef , pages 241-250. ACM, May 1969.

[LM92J Tom LEihton and Bruce Magp. Fast alelthins

Acknowledgments: This work is conducted under the direction of Thomas F. Knight, Jr. This research is supported by an Office
of Naval Research Graduate Fellowship and the Defense Advanced Research Projects Agency under contract N00014-87-K-0826.

11-1



A randomly-wired four-stage multibutterfly connecting 16 endpoints. Each component in the first three
stages is a radix-2, dilation-2 router. To prevent any unique critical paths between endpoints, the last stage
is composed of radix-2, dilation-i routers. The multiple paths between a selected pair of endpoints are
shown in bold.

Figure 1: Randomly-Wired Multibutterdy

a13.7 0-ObiI

110.

7.5 78S.09

A~31.5A
2.0 uSS
G.OL

0.850 10A I" 1.03 255 U. to Ida 10. 38 U.S
Pinnin Nawesk Fuihu Peiom Netwov FrAlni

Lefts The number of processor nodes lost after reconfiguration is plotted against the number of uniformly
distributed router failure. for randomly-wired multibutteryiies. At 25 percent network failure, only about
10 percent of the nodes are lost.
Right: The average time to route a particular task is plotted against the number router failures. The node
loss only curve is a reference line which plots the performance degradation due solely to the reduced number
of processors. The next two curves show the performance of the multi-hop and fault-propagation algorithms
on multibutterfiy-based systems. While the multi-hop system degrades significantly, the fault-propagation
system suffers very little additional performance degradation due to loss in network bandwidth.

Figure 2: Node Loss and Performance under Network Failure

11-2

.. ... .. .... -



M.I.T.
TRANSIT
PROJECT

Scan-Based Testability for Fault-Tolerant Architectures
(Abstract)

Andr6 DeHon
(andreoai.mit.edu)
NE43-791, x3-5868

MIT Al Lab
545 Technology Square, Cambridge, MA 02139

May 8, 1992

With the standardization of Test Access Ports component to be accessed from any of several
(TAPs) and boundary-scan techniques in IEEE- scan paths. Figure 1 shows the basic scan ar-
1149.1-1990 [Com90], vendors are beginning to make chitecture for a dual-TAP component.
components with scan-based TAPs readily available.
Nonetheless, the facilities offered by TAP interfaces 2. Port-by-port selection - each channel on a com-
such as the IEEE-1149 standard are not well-suited ponent can be independently disabled.
for fault-tolerant system architectures. The singular 3. Partial-external-scan - each channel can be
and serial nature of the scan path exposes a criti- scanned in boundary-test mode independently
cal single point of failure in the testability system. of the operation of other channels on the same
Architects are forced to either use a few, long serial component.
scan chains or use many short scan chains. The for-
mer allows a fault in a scan path to affect a large
number of components while the latter requires sig- When combine these additions provide a scan archi-
nificant wiring for the control of many scan paths. tecture which is well adapted for a large class of fault-
Furthermore, standard TAPs provide no facilities for tolerant systems. In particular, the additions allow:
bringing small portions of the system into test-mode
while leaving the remainder of the system in normal 1. Minimized impact of scan path faults on system
operation. In fault-tolerant architectures where the diagnosability
system can function without all components on-line,
these all-or-nothing testing modes can be inconve- 2. Minimally intrusive in-operation fault-
nient. diagnosis

We have developed three simple additions to stan- 3. In-operation reconfiguration for:
dard scan practices which allow scan techniques to
be utilized effectively in a fault-tolerant setting. The * fault-masking
basic techniques introduced are: * repair

1. Multi-TAP scan architecture - each component These additions and the capabilities they provide are
is given multiple Test Access Ports allowing the developed in [DeH92].

Acknowledgments: This work is conducted under the direction of Principal Research Scientist Thomas Knight Jr. This research is
supported in pert by the Defense Advanced Research Projects Agency under contract N00014-91-J-1696. This material is based upon
work supported under a National Science Foundation Graduate Fellowship. Any opinions, findings, conclusions or recommendations
expressed in this publication are those of the author and do not necessarily reflect the views of the National Science Foundation.

12-1



Boundary RegisterI

0

0

ZScan Register

TAP
TCK1 Controller

References~Bpas JuRegi.sEESter4.1190

IntutonRgser9]AdiD~n cnbsdtsaiiyfrfut

(Coi9J EE SanarkComita.nd E Conflict Tesoltitlon rhtctrs rni ot 0 I r

TD122



Serializing Parallel Programs

(Abstract)

Michael D. Ernst'

Programmers would like to be able to write a single
program for both parallel and serial computers. Histor- Source: ZO X1  X2  2  X4  ZS Z

ically, the focus has been on parallelizing serial code.
In this paper, we argue that the reverse-serializing
parallel code-is both more natural and more efficient.
We introduce and evaluate three methods for serial- 2 4 7

izing parallel code-unrolling, loop common expression Result:

elimination, and finite differencing-and compare them
to parallelization. All three methods are based on a Figure 1: The five-element example, a Jacobi-like win-
form of common subexpression elimination across loop dow sum operation.
boundaries.

An algorithm's fastest implementation depends cru-
cially on the target architecture. Fast serial algorithms for i = 2 to n-3
resist parallelization or vectorization because of depen- nevx[il = (x[i-2) + x[i-iJ + x[iJ

dences between loops which were introduced to reduce + xri+1) + x[i+2]) / S

the total work done by the program. Parallelization
requires detection and removal of these dependences Figure 2: Elementwise (data-parallel) implementation
in order to permit loop iterations to execute concur- of the window sum. Each result array element can be

rently. The maximally parallel implementation of an ofpte in para cuem.

algorithm achieves the greatest speedup on a parallel computed in parallel.

machine with sufficiently many processors, but it may
be inefficient when run on a machine with too few pro- reverse because we can obtain better performance onreverse Wecaus may ben repeain onte serfomanc prcssr
cessors. Work may be repeated on several processors parallel computers and, often, on serial ones as well. An
in orser to avoid dependences and permit the proces- equally important motivation is that explicitly parallel

quires toe oelimiateiondepefdenty. redunnt ser uation. r programs written in a high-level fashion (for instance, in
quires the elimination of this redundant computation. the data-parallel paradigm) tend to be easier to write,

When the parallelism in the problem exceeds that read, and debug than serial ones, and are much simpler
available in the hardware, the best implementation is than arbitrary parallel programs

a hybrid parallel/serial one which breaks the problem A one-dimensional Jacobi-like relaxation problem

into pieces, then uses a fast serial algorithm to evaluate will be used as an example to demonstrate the three

each of the pieces. The programmer should not be bur- metose is a vecto onubrand the

dened with this task, since he usually cannot know how methods. The input is a vector of numbers, and the

many processors his program will be run on. Further- goal is to compute, for each i, the average of the five

more, specifying two different algorithms is error-prone, nearest values (those with indices i - 2 to i + 2). This

particularly when the programmer must direct their in- computation is graphically depicted in figure 1, in which

teraction. The transformations described in this paper a line between a source and result array element in-

take care of those details. dicates that the result array element depends on the

We choose to serialize parallel code rather than the source array element.
The first method is to unroll the loop and perform

t Author's address: MIT Laboratory for Computer Sci- ordinary common subexpression elimination; figure 3
ence. 545 Technology Square, Cambridge, MA 02139. Email: shows that 6 result elements can be computed with 12
mernst~theory.lcs.mit.edu. additions, for an average cost of 2 operations per ele-

This research was supervised by Charles Leismrson and sup- ment. Finding a good unrolling is difficult in its own
ported by a National Defense and Science Graduate Fellowship
and by Defense Advanced Research Project Agency contract right: unrolling by one element less or more would in-
N00014-91-J-1698. crease the cost per element to 2.2 or 2.3, respectively.

13-1



5o 5 53 53 S4 SO $. ST S, S, runningsuu = x[O] + x[11 + x[21 + x[31;
for (i = 2: i <= n-3; i++)

( runningsun = runningsun + xfi+2];
nowx[i] = runningsum / 5;

runningsum = runningsum - x[i-2]; }

R, R3  R4  RS R, R,
Figure 5: Running sum implementation of the five-

Figure 3: The five-elemnent sum after unrolling to ex- element sum.
pose six iterations and finding the optimal set of com-
mon subexpressions. so S, S3 S3 S4 so 54 S,

S" S' sS S3  S4 S1  S,//S

R2 R, R4 R,

R, R3  R4 R5 Figure 6: Diagram of the operations performed by the

running sum implementation for each result element.

Figure 4: When loop common expressions are taken Unlike the other two methods, no unrolling is required

into account, computations performed by previous iter- and after the initialization code, it requires 2 operations

ations help the current iteration. When computing the per element.

next set of four results, the sum Ss + S6 can be reused
in the same place that S + S2 occupy in this diagram, performed if the operation (addition, in our example)
resulting in a savings of I operation per 4 elements, is commutative and has an inverse; all three methods

require associativity. This method can suffer from nu-
merical instability if the operation does not have an

The best unrolling can be quite large, resulting in code exac inse-f coper ations of arith-

size explosion. Another difficulty is that finding the op- metic operators do-but it requires very little unrolling

timal set of common subexpressions is NP-complete [1]. and its operation count is quite low.

The second method is to use loop common expres- Two of these methods have been implemented and
sions, which are expressions that can be used by more show great promise; an implementation of the third is
than one loop iteration. Iteration i arranges its compu- underway. Each is best in a particular set of circum-
tations so as to help iteration i+ 1, possibly resulting in stances, and speedups ranging to ten times have been
slightly increased costs for iteration i, relative to order- observed for certain problems. For typical programs,
ing its computations in the greediest way. Any extra the speed improvement is more modest, but still no-
cost is offset by the fact that iteration i - I has done ticeable.
the same thing, relieving iteration i of some work it
would otherwise have to do. See figure 4 for an ex-
ample. This method performs well and may require References
fewer temporaries and less interprocessor communica-
tion than the other methods, but its per-result opera- [1] A. V. Aho, S. C. Johnson, and J. D. Ullman. Code
tion count is usually slightly higher. generation for expressions with common subexpres-

The third method is an extension of the method of sions. Journal of the ACM, 24(1):146-160, January

finite differencing [2, 3]. The difference between the 1977.
values computed by two loop iterations is added to a [2] J. Earley. High level iterators and a method for au-
previous result to produce a new one. Such a strategy tomatically designing data structure representation.
is worthwhile when, given the final result for iteration Computer Languages, 1(4):321-342, 1975.
i, it is easier to undo some work and then compute
result i + I than to compute it from the intermedi- [3] Robert Paige. Transformational programming: ap-
ate results that were used in computing result i. (This plications to algorithms and systemrs. Technical Re-
method is never worthwhile in straight-line code.) See 5 port DCS-TR- 118, Rutgers University Department
for an example of such code; figure 6 shows the com- of Computer Science, New Brunswick, New Jersey,
putation performed. This transformation can only be September 1982.

13-2



A Systems Language Compiler for the J-Machine
D. Brennan Gaunce

Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139
bren@ai.mit.edu

Introduction

This abstract describes the J compiler, a systems language compiler for the J-Machine. The J-Machine
is a fine-grain concurrent computer comprised of up to 65536 36-bit Message Driven Processors (MDP)
which communicate through a low latency network (1]. The J language is modeled after the C programming
language with additional syntax to provide support for accessing primitives in the underlying architecture.
The main goal for the J compiler is to provide a systems programming language for the J-Machine by
supporting access to the underlying hardware. The language should allow efficient communication without
imposing a high runtime overhead. A secondary goal is compatibility with the C language; in the future,
the compiler should run most C programs on a single processor with little or no modification.

Language Enhancements

The J language provides many enhancements to the C language to allow full accessibility to the underlying
hardware. The most prominent feature of the language is the function declaration.

A function may be declared as a subroutine, fault handler, or handler. A subroutine is a function which
is executed immediately on the same processor as its caller. This is useful for executing procedure calls
without suspending the current thread. A fault handler allows the programmer to set up a function which
will be executed when a fault occurs (e.g. a type fault). Handlers are functions which execute on a different
node. Handlers may be invoked either synchronously or asynchronously. A synchronous function invocation
suspends the current thread until a reply message is received from the callee; an asynchronous invocation
continues executing the current thread concurrently with the callee. If a thread tries to use the result
of an asynchronous call then a fault occurs, suspending the thread until the result is received. Function
declarations themselves may be specified as synchronous or asynchronous to allow certain optimizations to
be performed. For example, a function declared as asynchronous void need not reply to the caller.

Other enhancements in the language include tags to support tagged words, multiple return values, seg-
ment descriptors, and priority function invocations.

Implementation

Compilation consists of parsing, type checking, code generation, and optimization. Parsing and type checking
are similar to existing compilation techniques. The output of the parser is a syntax tree. The type checker
decorates the tree with types and similar annotations. Code generation transforms the syntax tree into a
complex intermediate code similar to complex J described in [3]. This intermediate language resembles the
MDP instruction format, except that a symbolic register set is used, and operands are not as restricted.
Code generation is followed by a series of optimizations, including copy propagation, constant folding, dead
code elimination, and peephole optimization. Next, registers are allocated and spill code introduced. The
complex intermediate language is then transformed to a simple intermediate language using legal MDP
operands. Finally, several MDP-specific transformations are performed, such as send folding and long branch
calculation. Following optimization, MDP assembly code is emitted.

Rules

The rules language allows the J compiler to be maintained easily without writing any source code. Each rule
maps a pattern of instructions on the left hand side to another set of instructions on the right hand side. A

1 William Daily both supervised and contributed to thin work. The remarch desribed in this paper was supported in part

by the Defense Advanced Resech Projects Agency under contracts N00814-85K-0738 and N00014-87K-0825 and in part by a
National Science Foundation Presidential Young Investigator Award, grant MIP-8657531, with matching funds from General
Electric Corporation and IBM Corporation.

14-1



set of instructions only matches if each instruction in the left hand side matches instructions inside a basic
block. Each instruction pattern contains patterns specifying both an operator and its operands. Operators
model MDP instruction opcodes. Operator patterns may be literal, matching only a particular operator,
or an identifier, preceded by a question mark, which match any operator. Examples of operator patterns
are ADD and ?op. Similarly, operand patterns may be literal or identifiers. Operand identifier patterns may
also contain a predicate, represented by a letter preceding the operand, which specifies that the pattern can
match only certain operands. For example, R?opt will only match register operands. OL ,r examples of
operand patterns are A?op3, ?reg, and 32. Finally, escape clauses back to the compiler allow more general
rules to be formed.

Examples of rules are shown in Figure 1. Rule (1) is a typical peephole optimization rule. Rule (2) is a
general rule, stating that an immediate in the first operand should be switched with a register in the second
operand if the operator is associative. This rule is needed since only registers are allowed in the first operand
position in many MDP instructions. Finally, Rule (3) exhibits a rule to help fold SEND instructions. Most
optimizations in the compiler are performed by rules. The rules language provides an effective mechanism
for transforming the intermediate language, and is instrumental in maintaining MDP specific optimizations.

(1) MUL ?opl, 1, ?op2 ==> MOVE ?opl, ?op 2

(2) ?op I?opl, R?op 2 , Rop3 is-assoc ?op

?op R?op 2 , I?opl, R?op3

(3) SEND ?a, ?priority
SEND RTb, ?priority

S END2 ?a, R?b, ?priority

Figure 1: Examples of rules

Related Work

Concurrent Smailtalk [2], the most substantial programming system for the J-Machine, has been suggested
as a systems language, although a large fraction (up to 70%) of program execution is typically consumed by
the accompanying runtime system. Additionally, the Id language introduces dataflow computation to the
J-Machine [3].

Future Effort

Currently, the J compiler produces assembly code for a suite of several tests. This suite is executed on
the hardware regularly, typically on 8x8xl cubes. Several areas for further effort in the compiler include
additional functionality, better optimization, standard libraries, debugging, and profiling. Several groups
are interested in using the J language as a programming environment or as a back end to other languages.
Finally, a collaboration among the different programming systems to develop a single back end would focus
the optimization effort and produce more efficient and uniform object code for the J-Machine.

References

[1] William J. Dally et al. The J-Machine: A fine-grain concurrent computer. In G.X. Ritter, editor,
Proceedings of the IFIP Congress, pages 1147-1153. North-Holland, August 1989.

[2] Waldemar Horwat. A concurrent smalltalk compiler for the message-driven processor. AI Memo, MIT,
545 Technology Sq., Cambridge, MA 02139, May 1988. SB Thesis.

[3] Ellen Spertus. Dataflow computation on the J-Machine. Al technical report 1233, MIT Artificial Intel-
ligence Laboratory, 1990.

14-2



The Coprocessor Host Interface Chip

Nikhil Gautam"
NE43-503

ncgautam@lcs.mit.edu

Introduction

The Telemedia, Networks and Systems group is in- NTCOD-
volved in the design and the deployment of a dis- A I I

tributed video system. Host workstations, display RE S-

units, and cameras are to be interconnected by a I[.eba

high-speed broadband network, called VuNet [3]. CpU
This is a Local Area Network (LAN) that will sup- LR3)
port Asynchronous Transfer Mode (ATM), a new ,yum
communications standard set by the CCITT for the Bus DATA B --
Broadband Integrated Services Network. In VuNet, 3 R,. F-r

data will travel in fixed-siz- '5' byte) packets called
cells.

The functionality of the Coprocessor Host In-
terface Chip is to transfer cells between an R3000- Figure 1: Functional Block Diagram
based Decstaion 5000, and VuNet. Typically, host
interfaces to ATM networks have been designed so
that the ietwork has to be addressed via a memory- chip.
mapped standard I/O bus [1, 4]. With the copro- The block diagram in Figure 1 illustrates the
cessor host interface, however, the network appears various modules in the coprocessor. The chip con-
to reside in the registers of a tightly-coupled copro- sists of cell buffers, a register file'[2], control reg-
cessor. It is expected that this interface will provide isters, a status register, a decoder unit, a timing
an increased throughput over our Turbochannel- generator, and memory drivers.
based interface, currently being used.

To send a cell into the network, the CPU would
read the status register of the chip, to determine

Functional Description whether there is room in the output cell FIFO.
Then the CPU can load the cell directly into the
coprocessor register file from main memory, in 32-

In basic terms, the chip acts upon the coprocessor bit word chunks. Next, the CPU would issue an
instructions that it receives from the MIPS R3000 instruction that transfers the entire cell from the
processor system. These instructions can be loads chip's register file to an output cell FIFO on the
and stores between the coprocessor's registers and chip in one cycle. Then, it is uptc the network to
main memory, or moves between the coprocessor's clock the data out from the FIFO. While an ATM
registers and the CPU registers. Other instructions cell is 53 bytes, the coprocessor FIFOs can be pro-
allow the user to set control registers on the chip, grammed to deal with cells of upto 64 bytes.
or to carry out internal data transfers within the

In the opposite direction, the network would
*This work is being supervised by Prof. David Tennen- clock a cell into an input cell FIFO of the chip. The

house. This work is part of the Aurora Project, which is
funded by DARPA and NSF through the auspices of CNRI. 1The cell buffers and register file were already designed
Initial design work on this project was done by David Mar- by Jason Hickey at Bellcore for his cell engine chip, and those
tin, then a VI-A student in the Telemedia, Networks and same designs were used for this project too. The use of these
Systems group. designs influenced parts of the design of the coprocessor chip.

15-1



non-empty cell FIFO would then cause the chip to However, with the coprocessor interface, the val-
generate an interrupt signal. The CPU would then ues will be read from the coprocessor register file,
react to the interrupt by transferring an entire cell which is not memory mapped, thereby bypassing
(upto 64 bytes) from the chip's input cell FIFO to the cache.
the chip's register file. And finally, the CPU would
issue a number of store instructions to transfer the Further, the R3000 instruction set allows words
data in 32-bit chunks from the coprocessor register to be written directly between a coprocessor's reg-
file to the R3000 main memory. isters and main memory. In the case of the Tur-

bochannel interface, however, data has to be moved
via the CPU's general registers. Thus, in the co-
processor interface, a fewer number of instructions

Chip Description need to be issued by the CPU, thereby increasing
the bandwidth.

There are four cell buffers on the chip, which can
be configured to be input or output FIFOs. Each
cell buffer can hold up to four 64-byte cells. The Initial Measurements
register file consists of 64 32-bit registers, and has
one 32-bit read port, one 32-bit write port, and one
512-bit read/write port, which allows an entire 64- Some initial measurements were taken, which corn-
byte cell to be transferred to (or from) a cell buffer pared the bandwidth of the Turbochannel interface
in one cycle, with the coprocessor interface. Since the coproces-

sor is still being fabricated, data was written to
The decoder unit is responsible for decoding the and from the floating point coprocessor's registers.

instruction coming from the CPU and generating These measurements show that the bandwidth in-
the appropriate signals for the other parts of the creased by a factor of about 2.1 (throughput in-
chip. The memory drivers interface to the system creased from 128 Mbps to 275 Mbps) in the trans-
bus of the MIPS R3000. This bus is 32-bits wide, mit direction, and by a factor of about 4.8 (through-
bidirectional, and multiplexed between instruction put increased from 56 Mbps to 271 Mbps) in the
and data values. The timing generator is respon- receive direction.
sible for buffering the clock signal to the various
parts of the chip, and handling CPU stalls.

This chip is currently being fabricated by VTI References
in 1.2 micron technology. The die size is 7.6mm by
5.2mm, and the packaging used is a 223-lead high- [1] Bruce S. Davie. A Host-Network Interface
performance ceramic pin grid array. Architecture for ATM. In SIGCOMM 1991,

September 1991.

Performance [2] Jason Hickey. ATM Cell Processor. Bellcore.

[3] David L. Tennenhouse. The ViewStation Re-
search Program on: The Design and Deploy-

It is hoped that this coprocessor-based interface will ment of Distributed Video Systems. DARPA
increase the bandwidth in and out of the worksta- Proposal.
tion, compared with the Turbochannel-based inter-
face currently in use in our group. This increase is [4] C. Brendan S. Traw and Jonathan M. Smith. A
expected for several reasons. One reason is that the High-Performance Host Interface for ATM Net-
coprocessor will be directly attached to the R3000's works. In SIGCOMM 1991, September 1991.
internal system bus, which is a high bandwidth bus
(32 bits at 40MHz).

Another reason for performance improvement
is the potential gain from avoiding cache misses.
When reading values from the Turbochannel inter-
face, a cache miss is bound to occur, since data com-
ing from the network is not already in the cache.

15-2



Performance Evaluation of modes of the SEND command, the reply mode and the
Network Interfacesi forward mode. When one of these modes is used, the

SEND command composes an outgoing message using
Dana Henry and Chris Joerg certain input registers in place of certain output regis-

MIT Lab for Computer Science ters.
545 Technology Square, Cambridge MA, 02139 Hardware Message Interpretation: Once a

dana~abp.lcs.mit.edu, cf5Gabp.kcs.mit.edu message arrives at its destination, the programmer must

We have examined two aspects of network interface somehow interpret the message. In a typical network in-
design wchcave dram atin t affects te cotwor interfe terface, the programmer will have to check the status

design which can dramatically affect the cost of inter- register to find out if there are any exceptional condi-
processor communication: the acceleration of frequent tions and if a message has arrived, read the type of the

operations via simple hardware mechanisms, and the arrived message use the type to trc
phyica plcemntof he etwrk ntrfae wth espctarrived message, use the type to compute the instruc-

physical placement of the network interface with respect tion address of the handler for that message, and finally
to the processor. Our performance study demonstrates jump to that handler. We have reduced this overhead
the importance of these features [HJ 92]. to one or two instructions by precomputing the address

The hardware mechanisms we consider are those of the handler into a special interface register.
in NIC [HJ91a][HJ91b], a network interface chip which
we have designed and extensively simulated at the RTL In addition to the hardware mechanisms, the effi-
level. The basic NIC architecture consists of 14 inter- ciency of a network interface is affected by the physical
face registers, an input message queue, and an output placement of the network interface registers with respect
message queue. Of these 14 registers, five output regis- to the processor. We consider three different placements

ters contain the words of the message being composed; in our study: inside an off-chip cache, inside an on-chip
five input registers contain the words of a received mues: cache, and inside the processor's register file. If the reg-
sage; and the rest provide control and status informs- isters are mapped into a cache, as in NIC, each reading
tio(such; asd crent queuide control aor writing of an interface register will consume processor
tion (such as current queue sizes). cycles. In our performance study, we have assumed two

In addition to accessing the interface registers, the delay slots for reading via a load from an off-chip cache
pr,.essor communicates with NIC via several com- and no delay slots for reading via a load from an on-
mands. The SEND command composes a message from chip cache. SEND and NEXT commands can be sent
the five output registers and appends it to the output simultaneously via the low bits of load and store ad-
queue for sending. The NEXT command removes the dresses. On the other hand, if the interface registers are
message at the front of the input queue and places its inxlu.ded in the processor's register file, reading or writ-
values in the five input registers. ing an interface register no longer takes a separate in-

Three hardware mechanisms accelerate the han- struction. Moreover, the SEND and NEXT commands
dling of messages in NIC: encoded message types, fast can be incorporated into the unused bits of every triadic
reply and forward modes, and hardwired message inter- instruction.
pretation. In our performance study, we have analysed two

Encoded Message Types: Each message must parallel programs using each of the three network inter-
somehow identify the message handler to be invoked face placements both with and without our hardware
when the message arrives at its destination. Typically, mechanisms. The first program, a 100 by 100 matrix
the id of the handler is specified in a separate word of multiply, subdivides matrices into 4 by 4 blocks and
the message. This word has to be generated and stored computes their products. The second program gener-
in the interface. To avoid this overhead, we allow the ates every distinct paraffin isomer, a hydrocarbon, up
id's of frequently invoked handlers to be encoded into to size 14 [AHN88]. Both programs have been written
a four-bit type field. This type field is automatically in the non-imperative subset of the Id [Nik90] program-
specified as part of each SEND command. ming language and compiled for the TAM [CSS+91] pro-

Fast Reply and Forward Modes: When a pro- gramming model, a relatively fine-grain programming
grammer decides to reply to a message, some fields of model.
the message to be sent are already in input registers. In Figure 1 shows the dynamic number of RISC in-
a typical network interface the programmer will have to structions for the two programs under each network in-
explicitly move these fields into the output registers. To terface model. We have computed these numbers by
avoid this overhead, we have implemented two special using a software simulator of TAM to get the dynamic

'This work is bing supervised by Prof. Greg Papadopou- instruction counts. We then replaced the dynamic count
los. This report describes resesrch done at the Laboratory of of each TLO instruction by the appropriate number of
Computer Science of the Massachusetts Institute of Technology. RISC instructions. Each bargraph in Figure I is di-
Funding for the Laboratory is provided in part by the Defense Ad.
vanced Research Projects Agency under Office of Naval Research vided into two components. The clear, top compo-
contract N00014-89-J-1988. nent corresponds to the total number of instructions

16-1



Matrix Multiply (100x100) 3 Paraffins (14) 2.8
40 38.0 "nstruct ons 2.64 nstructions 35.3 (millic's)

(millions)

30 26.1 26.6 27.7 2- .9.

21-2 i.5HR .- *-".2 !1. !! 2 1ii.2 1!12 I_ 2 5 .58 .58 5 .8 5 1

Reg On Off Reg On Off Reg On Off Reg On Off

Optimized Basic Optimized Basic

Reg - Interface mapped to Register cacheCommunication Instructions
On - Interface mapped to On-chip cache

Off - Interface mapped to Off-chip cache WOther Instructions

Figure 1: Dynamic instruction counts for 100 by 100 matrix multiply and 14 paraffins using the six different

network interface implementations.

executed in order to send, dispatch, and process mes- sium on Biological andArtificial Intelligence

sages. Although some of the instructions inside message Systems, September 1988.

handlers do perform useful work, such as memory allo-

cation or queueing of deferred read requests, most of [CSS+91] D. Culler, A. Saht, K. Schauser, T. von

these instructions can be considered network interface Eicken, and J. Wawrsynek. Fine Grain Par-
overhead. The shaded, bottom component corresponds olleism with Minimal Hardware Support: A

to the remaining instructions, ones which are not in- Compiler-Controlled Threaded Abstract Ma-

volved in communication. chine. In Proceedings of the Fourth Inter-
national Conference on Architectural Support

The data in Figure 1 leads to several insights. First, for Programming Languages and Operating
communication has a first-order effect on the these fine- Systems, April 1991.

grain parallel programs. Although the dynamic fre-

quency of executing a high-level message sending in- [HJ91a] Dana S. Henry and Christopher F. Joerg. The

struction is relatively low, 9% and 11%, more than half Network Interface Chip. Technical Report

of all the RISC instructions are dedicated to commu- CSG Memo 331, MIT Laboratory for Com-

nication. In addition, hardware optimisations of the puter Science, 545 Technology Square, Cam-

network interface appear more important than the ac- bridge MA 02139, USA, June 1991.
tual placement of the interface. Even existing proces- [HJglb] Dana S. Henry and Christopher F. Joerg. The

sors could considerably lower their communication costs Network Interface Chip. In Proceedings of the
by attaching an optimized interface, such as NIC, on 1991 MIT Student Workshop on VLSI and

their external cache bus. Most importantly, the gains Parallel Systems, pages 12-1,12-2, July 1991.

achieved by using a register-based, hardware assisted

network interface are substantial. The cost of commu- [HJ92] Dana S. Henry and Christopher F. Joerg.

nication decreases, on average, by a factor of two and A Tightly-Coupled Processor-Network Inter-

one half as we optimize the network interface and incor- face. In Proceedings of the Fifth International

porate it into the register file. Conference on Architectural Support for Pro-

gramming Languages and Operating Systems,

October 1992.

References (Nik90] R.S. Nikhil. Id Version 90.0 Reference Man-
ual. Technical Report CSG Memo 284-1,

[AHN88J Arvind, S. Heller, and R. S. Nikhil. Program- MIT Laboratory for Computer Science, 545

ming Generality and Parallel Computers. In Technology Square, Cambridge MA 02139,

Proceedings of the 4th International Sympo- USA, September 1990.

16-2



AIDA: Data Structure Optimization on a MIMD Parallel Computer

Waldemar Horwat
Concurrent VLSI Architecture Group

waldemar@ai.mit.edu NE43-630

Introduction
An important impediment to writing efficient parallel software is the difficulty of crafting the code to efficiently
map data and control structures to a computer's architecture in order to exploit locality or reduce contention for
critical resources such as storage or network bandwidth. The best implementation of a module may differ de-
pending on hardware architecture, the module's interface to other modules in the program, and the resources
available when it is used, thus making writing general-purpose libraries difficult. Much of this information is
difficult to predict when the program is being written, so the programmer often does not have the information
necessary to decide which is the best representation for a program structure.

AIDA (Accelerated Implementations of Data Abstractions) is a new language and environment that allows the
programmer to specify alternative implementations of a module and provides the computer with considerable
latitude about choosing implementations based on compile-time and run-time information. The language per-
mite a range of representation annotations and hints for the compiler. A major goal of this work is the definition
of efficient abstraction mechanisms for MIMD parallel computers--one should be able to define general abstrac-
tions such as a generic sort routine and have the system customize their data and control representations to
best fit their usages.

Some methods of choosing sequential data representations have been explored before in SETL (71, LIBRA (31,
[6], and [5]. Whereas these systems aimed at making programming easier with some loss of efficiency, AIDA's
emphasis is on letting programmers generate more efficient modular programs than they could using standard
techniques. Parallel programming is more difficult than sequential, and the wider information gap between
what the computer can determine about a-parallel program and what the programmer knows provides an oppor-
tunity for representation optimizations. Unlike FORTRAN optimizers such as [4], AIDA is focused on optimiz-
ing complex data structures and symbolic code.

Example
The Pentomino program (see the figure) illustrates
several kinds of data structure choices. There are several
important data and control structures in this program
which can have multiple representations:

"* The twelve pieces and their orientations: lists of(xy)
square coordinates or 60-bit bitmaps IL

" A board with partially placed pieces: a 6x10 array of
piece numbers or, for some uses, simply a 60-bit
bitmap. The border (marked with light gray) is espe-
cially interesting in guiding the search, but it is a
bulky data structure (including some information not
shown in the figure). When expanding a placement,
the system has a choice of rebuilding the border data
structure or incrementally modifying the existing one;
which one depends on implementation details such as
whether the process to search the new position is local Pentominoes and one solution
or remote and how expensive it is to ship the border Th p p finds all 2339 possibl, arrange-
data structure to it. ments of the twelve pentominoes in a 6x10 rectangle.

" The search tree. This control/data structure is cre- The pentomino" can be rotated or flipped over.
ated and destroyed as the search proceeds. The The pentomino solver does an exhaustive depth-first
search must switch from breadth-first at the higher search with pruning, placing pieces one at a time. At any
levels to depth-first at the lower levels to avoid ex- particular time the search picks a square along the
hausting memory. boundary (light gray) of the already placed pieces and ex-

pends the search tree one level by trying to fit each of the
remaining pieces so that it covers that square. The
search uses a heuristic that tries to pick the boundary

This research is supervised by W. Daily and supported by an square with the smallest number of mafthee; if there is a
ONR fellowship, by DARPA under contracts N00014-88K-0738 botundry square with no matches, that search branch can
and N00014-91-J-1698, by Air Force Systems under contract be abarEined immocatSV.
F19628-92-C-0045, and by a NSF Presidential Young

17-1



The AIDA Language
AIDA is based on a statically typed version of Concurrent Smalltalk [21, an imperative parallel programming
language based on object-oriented programming and futures. AIDA is highlighted by the following constructs:

" The (choose altl alt2 ... altn) statement lets the compiler or run-time system choose, at its discretion,
which of the alternative statements to execute. This statement is useful when ti'ere are several ways to
perform a function, nonE- of which is clearly superior when the program is written. -xitl and alt2 could, for
instance, be two sort algorithms, one of which is more appropriate for tightly localized data, the other of
which is better for data spread throughout a parallel computer. choose statements can be linked and anno-
tated to make several choices dependent on one another.

" Multiple representations of a data type. A data type such as a set or array can have multiple representa-
tions. The compiler and run-time system choose a particular representation, for which the programmer can
provide hints (stating a preference for a particular implementation, limiting the size of an array, etc.).

" Variants of a representation of a data type. Some data structure variables can be declared optional; the
system will drop them if they are not needed (this interacts well with choose statements which can either
access these instance variables or calculate the values in some other manner if the data structure variables
are not available).

" Transformers and coercers that convert one object representation into another at run-time. For instance,
one representation of a set can be transparently transformed into another, and a general array variant can
be coerced into a fixed-length one. The (transform obj) statement provides a hint to the system that it
might be worthwhile to revise the representation of obfs data at this point in the program.

"* Annotations for optimizing hierarchical combination of data structures (inclusion, local or remote pointers,
etc.) and for passing arguments to functions.

" Annotations for optional data-driven synchronization. Rather than using return values to signify that a
function is done, control flow can be synchronized using auxiliary counters or presence bits. This avoids the
need to create, save, restore, and synchronize on contexts, which can be the most expensive operations on
fine-grained parallel computers [2].

AIDA is designed to efficiently support both sequential machines and MIMD parallel computers such as the J-
Machine [1). The code generated for them will be very different, and the programmer can use the choose and
data representation facilities to specify both sequential and parallel algorithms in cases where the best ones dif-
fer. The system will decide whether to bring all data to one node and use the sequential algorithm or whether to
run the algorithm in parallel; such decisions often depend on what the rest of the program is doing.

AIDA makes choices by using compiler inference, heuristics, and programmer hints where possible to determine
the sizes of data structures and operations performed on them. Where a choice cannot be made at compile-time,
AIDA tries the various alternatives at run-time and collects statistics on them to make the choices.

At this time we are in the process of implementing AIDA with a J-Machine as the target architecture.

Bibliography
[11 William J. Daily et al. "The Message-Driven Processor: A Multicomputer Processing Node with Efficient

Mechanisms." IEEE Micro, 12:2, April 1992, pp. 23-39.
[21 Waldemar Horwat. Concurrent Smalltalk on the Message-Driven Processor. MIT Artificial Intelligence

Laboratory Technical Report 1321, September 1991.
[3] Elaine Kant. 'On the Efficient Synthesis of Efficient Programs." Readings in Artificial Intelligence and

Software Engineering, Charles Rich and Richard C. Waters, ed. Morgan Kaufmann, 1986, pp. 157-183.
[4] Kathleen Knob., Joan D. Lukas, and Guy L. Steele, Jr. "Data Optimization: Allocation of Arrays to Re-

duce Communication on SIMD Machines." Journal of Parallel and Distributed Computing, vol. 8, 1990,
pp. 102-118.

[5] James R. Low. "Automatic Data Structure Selection: An Example and Overview." Communications of
the ACM, 21:5, May 1978, pp. 376-385.

[6] Lawrence A. Rowe and Fred M. Tonge. "Automating the Selection of Implementation Structures." Read-
ings in Artificial Intelligence and Software Engineering, Charles Rich and Richard C. Waters, ed. Morgan
Kaufmann, 1986, pp. 245-257.

[71 J. T. Schwartz, R. B. K. Dewar, E. Dubinsky, and E. Schonberg. Programming with Sets: An Introduc-
tion to SETL. Springer-Verlag, 1986.

Investigator Award, grant MIP-8657531 with matching funds from General Electric Corporation, IBM Corporation, and
AT&T.

17-2



Computation Migration in Parallel Systems

Wilson Hsieh*
Large-Scale Parallel Software Group, MIT LCS

e-mail: wchsieh(Olcs.mit.edu

1 Introduction
We describe a language feature with which a programmer can control the location of computation in a parallel
object-oriented language; we hope that this will lead us to develop automatic methods for deciding where com-
putation should occur. The Prelude language [1], a parallel object-based language, provides instance methods,
class methods, and free-standing procedures; the execution of class methods and procedures (we shall refer to
both as procedures) is not tied to the location of any object. The common paradigm is to have a procedure
execute at a single location; when a procedure makes an instance method call, the call occurs at the object that
it is invoked upon, and control then returns to the procedure.

We provide the programmer with an annotation for instance method invocations (the annotation occurs at
the point of call) that specifies that the calling procedure migrates with the instance method call; in other words,
when a procedure invokes the specified instance method, it then finishes executing where the method executes.
We call this "computation-migration" (or "continuation-passing") because the continuation that represents the
"rest of the procedure" is passed along with the instance method call. Computation migration can be viewed
as a generalization of tail recursion; a tail-recursive call consists of passing a continuation at the last call within
a procedure.

Computation migration saves messages, as illustrated in Figure 1. A procedure on processor I calls two
instance methods on objects on processor 2, the second of which calls an instance method on processor 3; the
procedure then calls an instance method on processor 3. Without computation migration, this sequence of
calls takes eight messages: four call/return pairs. With computation migration, the sequence of calls takes
only four messages. This has several effects: it may reduce the load on the network (depending on the size
of a continuation message); and it should reduce the overall latency of the procedure, since less time is spent
handling message interrupts and there are fewer network transit times in its execution path.

There is a tradeoff involved in deciding when to make a call using computation migration; not every call
should use it, for several reasons. A continuation message will tend to be larger than a simple call message,
since the state of the procedure must be sent; using computation migration for all calls could increase rather
than decrease the network load. In addition, it would be inefficient to migrate a procedure to a processor that
is heavily loaded.

2 Alternatives
It is possible to explicitly code a continuation-passing structure in some languages (for instance, in Concurrent
Aggregates [2]). However, this would be done by adding procedures that represent the execution of a continu-
ation. For example, consider a procedure p, where p calls z.foo with computation migration. In order for the
programmer to achieve the specified behavior, he would have to add a method z.foo, that performs z.foo and
then executes the rest of p. This can required substantial amounts of complex code. It also breaks abstraction
boundaries, as the design of an object's interface must take into account any computation migration that the
object may be involved in. Finally, without tail recursion some extra messages would still be required.

3 Implementation
We would like to implement computation migration as a manipulation of stack frames at runtime: the appro-
priate data would be passed to the destination processor, where the stack would be set up; the call would be

"Supervised by Professor William E. Weibi. Supported in part by the National Science Foundation under Grant CCP-8716894,
by the Defense Advanced Research Projects Agency (DARPA) under Contract N00014.89.J-19S8, by an equipment pant frmn
Digital Equipment Corporation.

18-1



Processors Processors

Tim. 1 2 3 Time 1 2 3

Conventional call Mucture Coninuation-passing call stucture

Figure 1: The picture to the left shows a sequence of calls made without computation migration; the picture
to the right shows the same sequence of calls with computation migration used twice. Solid arrowheads in-
dicate instance method calls; blank arrowheads indicate returns from those calls; a dashed arrow indicates a
continuation-call.

executed by jumping into the code for the procedure. However, the current Prelude compiler produces C code,
so we do not have sufficient control of the actual code generation. Our current implementation of computation
migration is thus handled by creating a special continuation procedure for each continuation call; instead of
using the same code for the continuation, we execute this new procedure at the destination, where the arguments
of the procedure are the live variables at the point of the continuation call. Although this solution is inefficient
in terms of code space, it allows us to measure the performance gains of computation migration. Preliminary
results show that using computation migration can dramatically improve performance.

4 Conclusions
Our current design and implementation only handles a simple form of migration: the "rest of the procedure" can
move to another processor - a single stack frame moves. We are also investigating annotations that will allow
the programmer to move partial frames (execute part of a procedure remotely, and then return) or multiple
frames. Finally, when we gain more experience using computation migration, we will investigate having the
compiler decide when to use computation migration.

References
(1] William Weihl, Eric Brewer, Adrian Colbrook, Chrysanthos Dellarocas, Wilson Hsieh, Anthony Joseph, Carl

Waldspurger, and Paul Wang, "PRELUDE: A System for Portable Parallel Software." MIT Laboratory for
Computer Science, MIT/LCS/TRI-519, October 1991.

[2] Andrew Andai Chien, 'Concurrent Aggregates (CA): An Object-Oriented Language for Fine-Grained
Message-Passing Machines." MIT Artificial Intelligence Laboratory, AI-TR 1248, July 1990.

18-2



The Impact of Communication Locality on

Large-Scale Multiprocessor Performance

Kirk L. Johnson (tuna@lcs.mit.edu)*

MIT Laboratory for Computer Science
545 Technology Square, Room NE43-635

Cambridge, Massachusetts 02139

1 Introduction /---- -.-.-.-------

As multiprocessor sizes scale and computer architects turn to in- I application model 10
terconnection networks with non-uniform communication laten- -
cies. the lure of exploiting communication locality to increase 1
performance becomes inevitable. Models that accurately quantify 8
locality effects provide invaluable insight into the importance of i transaction model i_
exploiting locality as machine sizes and features change. In [4 ], I I
we present and validate such a model. This abstract provides .-. ---- - -----
a brief overview of that modeling framework and presents two
interesting results obtained thereby. First, one can show that ex- L network model
ploiting communication locality provides gains which are at most
linear in the factor by which average communication distance is
reduced when the number of outstanding communication transac-
tions per processor is bounded. Second. we obtain rough upper
bounds on the performance improvement available on a particu-
lar architecture by exploiting locality to minimize communication to mason about both temporal and physical locality effects, this
distance. research focuses on the latter. Numerous researchers have demon-

strated the importance of the former. compilation techniques for

2 What is Locarity? increasing temporal locality continue to be an active area of re-
search [5, 61.

Applications often take advantage of communication locality to Multiprocessor systems built around interconnection networks

realize performance gains. Communication locality is a property with non-uniform communication latencies can exploit physical

of both applications and architectures. Application locality (or locality in applications by mapping application threads to proces-

algorithmic locality) is that which is present in the organization sors such that average communication distances are lower than

of an application, independent of architectural details. Architec- would result from mappings which ignore the locality available

tural locality represents the ability of an architecture to exploit in the network.

application locality.

Two components contribute to application locality. The first, 3 A Framework for Modeling
temporal locality, represents the effect of decreasing the commu-
nication frequency between application threads. Applications that This section provides a brief overview of the aforementioned mod-
minimize inter-thread communication by maximizing data reuse eling framework: a more detailed treatment can be found in [4].
tend to exhibit good temporal locality. The second component. The modeling framework (Figure 1) consists of three individ-
physical locality, represents the effect of affinity in the commu- ual component models: an application model describes processor
nication patterns amongst an application's threads. Applications behavior in term of abstract communication transactions. a trins-
tend to have good physical locality to the extent that their inter- avion term s of abstrct com uicato satis, a crn-action model describes dhe resources requited to satisfy said corn-
thread communication graphs have relatively low bisection width munication transactions, and a network model characterizes the
and high diameter. An application in which all distinct pairs of behavior of the underlying interconnection network. The applica-
threads communicate equally has no physical locality. tion and transaction models are combined to obtain a node model

While the modeling framework discussed herein can be used which describes the behavior of individual multiprocessor nodes

"•*Tb us-c- repored oa brin wee upervsmed by Pm(sor Anam A as seen by the interconnection network. The final combined model
and funded in purt by NSF Vim 0 MIP-9012773, in put by DARPA , m a is obtained by joining the node and network models. These mod-
SN00014-7-K.025. and in pet by a NSF Pmuidemntia Young InveedgwoAwvd. els are joined such that applications effectively receive feedback

19-1



from the network and only inject messages at rates appropriate to latencies are reduced. Since communication latencies are linear
the message latencies they actually observe. in communication distance, reducing average communication dis-

One novel aspect of the modeling framework is the simplic- tance by some factor z can only provide performance gains which

ity of the application and node models. Essentially. each model are linear in z.

has only two parameters; these parameters correspond directly
to computational grain size (computation-to-communication ratio) 5 Exploiting Physical Locality
and latency sensitivity (ability to tolerate increases in communi-
cation latency). It is straightforward to show that this latency Intuition dictates that application performance should benefit from
sensitivity parameter is sufficient to describe a wide range of la- thread-to-processor mappings tmat reduce overall communication
tency hiding/tolerating techniques (e.g. multithreaded processors, distance. The more physical locality present in an application, the
relaxed memory consistency models, prefetching). greater the gains possible through reducing communication dis-

The network model used in this research is that for packet- tances. Using the modeling framework discussed above, one can
switched k-ary n-dimensional torus networks with separate unidi- obtain rough upper bounds on the potential benefit of exploiting
rectional channels in both mesh directions presented by Agarwal physical locality. While some benefit is available, it is somewhat
in [I]. This model assumes that messages are wormhole routed less than one might initially expect. For an architecture like the
according to an e-cube routing scheme [3]. MIT Alewife machine [21 organized as a two-dimensional torus,

We obtain the combined model by using the node and network exploiting physical locality provides no more than a factor of two

models to provide feedback to one another so that individual nodes or so performance improvement for a 1.000 processor machine:

"back off" as message latencies increase, injecting messages into with a million processors, the upper bound increases to roughly

the network at rates appropriate to the message latencies they so.

actually observe. Combining the node and network models pro- An examination of the factors leading to this less-than-expected
duces a polynomial quadratic in the average per-node message impact indicates that it is primarily due to the relatively high ratio
injection rate. This quadratic is easily solved to obtain the pre- of communication bandwidth to computation speed in that archi-
dicted message injection rate predicted. Other values of interest tecture. In fact. using the modeling framework, the degree to
(e.g. channel utilization, average inter-transaction issue time) are which various factors (e.g. fixed communication overheads, use-
obtained by substituting this predicted value into the appropriate ful work. etc.) contribute can be quantified. Such a breakdown
model equations, allows identification of the phenomena that lead to the apparent

disparity. Recomputing the gains for architectums with progres-
4 v tsively slower networks confirms this fact showing that larger gains

d VS. L n are possible when procesors are faster relative to the speed of the

interconnection network.
As machine sizes scale, applications with little physical locality
place increasing bandwidth demands on interconnection networks.
Increases in application bandwidth requirements in turn cause con- References

tention effects to become more pronounced. Using the framework
described above, one can demonstrate that under a reasonable set [1] Anaut Aguwal. Uimits on lnlelconmcdtiob Network Perfosm 398
of assumptions about application and processor behavior, the im- 412, acto oP 1991.
pact of contention effects is bounded, even for very large machines
and communication-intensive applications that induce heavy net- [21 Anant Agarwal. David haiken, Kirk Johnson, David Krmz, John

work loads. Kublsowicz. Klyohl Kuvbarm, Beng-Hong Lim, Gino Mus. and Dam
Nussaum. Me MIT Alewife Machine: A Large-Scale Distribmed-

Using the combined model, one can show that as machine Memory Multipocessor. Technical Report MrrhCSfrM-454, MIr
sizes scale and average communication distance increases, the av- Laboraory for Computer Scimoe. June 1991.
erage time it takes a message to travel a single network hop (Th) [31 Wiliam J. Dally. Performamce Analysis of k-ary n-cube Inmawaiec-
approaches a limiting value which depends only on average mes- tion Networks. IEEE 'ranations on Computers, pages 775-785. June
sage size, latency sensitivity of the application and node models. 1990.
and network dimeniou--independmt of machine size. Intuitively, [41 Kirk L. Johnson The Impact of Conmunication Locality on Lap-
Th approaches this limiting value because of the linkage between Scale Multiprocessor Periformnce. In Proceedfgs of the 19th Am"a
application and network behavior. If each node can only have Inhernational Symposium on Coiop r Archimctm, pops 392-402M
some finite number of communication transactions outstanding, May 1992.
increasing transaction latencies cause transaction issue rates to [5] G. N. S. Praums. Srucue Drive MultIiroccsor Coompiladon of
fall. This negative feedback keeps procesor from loading in- Numeric Problen. Technical Report r/LCSl-502. MIT Lrr o-
terconnection networks to a point where communication latencies rarory for Conulter Sdacce. Apdr 1991.

become unbounded. [61 Mchael E. Wolf and Monica S. Lam, A Dat Locality Optimizing

The fact that Th approaches this limiting value implies that av- Algodrhi. hI Proceedags of the ACV SIGPL.AN 91 Conferec on

erage communication latency is linear in communication distance. Programmiug Language Design a Imidmensati p4a 30-44,

This, in turn, has a profound impact on the potential benefit of June 1991.

exploiting physical locality. Any gain due to exploiting physi-
cal locality is bounded by the degree by which communication

19-2



On the Second Eigenvalue and Linear Expansion of Regular Graphs

Nabil Kahale *
MIT Laboratory for Computer Science

545 Technology Square
Cambridge, MA 02139

kahaleftheory.1cs. mit. edu

1 Main Results

Given an undirected k-regular graph G = (V, E) and a subset X of V, we define the expansion of X
to be the ratio NIaXOI where Na(X) = {w E V: 3v E X, (v,w) E E} is the set of neighbors of X.
Graphs whose all subsets of size lying in a given range have large expansion are called expanders
graphs.

Expander graphs are widely used in Computer Science, in areas ranging from parallel and
distributed computation to complexity theory and cryptography. The range of the subsets whose
expansion is relevant and the magnitude of the expansion needed depends on the nature of the
application. For example, in the design of the AKS sorting circuit, we need expanders of fixed
degree and such that subsets of size elVI have expansion at least u.', where e is a small fixed
positive constant. The depth of the resulting circuit is proportional to the degree of the expander.
In other applications, like the construction of non-blocking networks, we need a family of fixed
degree bipartite expanders where the expansion of linear-sized subsets is at least i. Indeed, this

2*
guarantees that a constant fraction of any small subset have unique neighbors.

It is not hard to show that random k-regular graphs, are good expanders: their expansion
coefficient is k - 1 - E, where e is an arbitrarily small positive constant. However, the naive and
only known method to calculate the exact expansion coefficient of a graph takes an exponential
amount of time.

The best known technique to calculate lower bounds on the expansion in polynomial time relies
on analysing the second eigenvalue of the graph. The smaller the second eigenvalue, the higher
expansion we get. This technique shows that random regular graphs have provable expansion at
least k/4. It also shows that Ramanujan graphs, which been constructed explicitly by Lubotzky,
Phillips and Sarnak in 1986 and independently by Margulis in 1987, have expansion at least k/4.
Ramanujan graphs and random graphs are known to have optimal second eigenvalue (up to a
1 + o(1) factor). In a previous work, Kahale [1] improved the lower bound on the expansion of the
LPS-M and random graphs to V(1 - o(1)). More recently, Kahale [2] improved this bound to 1(1 -

o(I)). Moreover, he essentially showed that the k/2 bound is the best bound any technique based
on the second eigenvalue can yield by exhibiting a family of graphs with asymptotically optimal
second eigenvalue and linear expansion only k/2. As an application of the improved expansion of
Ramanujan graphs, we can build explicit selection networks of asymptotic size (3 + e)n log2 n, for

"Supervised by Tom Leighton sad Supported by the Defense Advanced Research Projects Agency under Con-
tracts N00014-87-K-082S and N00014-89-J-1985, the Air Force under Contract AFOSR-89-0271, Lad the Army under
Contract DAAL-0346-K-0171.

20-1



U U'

Figure 1: The graph GR+ 2 in the neighborhood of u in the case k = 3. The dotted edges are those
belonging to E - E'.

any e > 0, improving upon the bound 6nlog 2 ni that was previously known. A selection network is
a network of comparators that classifies a set of n numbers, where n is even, into two subsets of
n/2 numbers such that any element in the first set is smaller than any element in the second set.

2 A family of k-regular graphs with asymptotically optimal second
eigenvalue and expansion k/2

In the following, we explicitly construct such a family. From Margulis and LPS, we know that
we can explicitly construct an infinite family of Ramanujan graphs Hn on n vertices whose girth
is at least (4/3 + o(1))log,,-,.n. The girth of a graph is the length of its shortest cycle. Let
H. = (V, E) be an element of the family and u E V be a vertex of H,. Since the girth of H,
is large, the graph H. looks like a regular tree in the neighborhood of u. Let u,,..., u, be the
neighbors of u and let 1,..., vi be k vertices distinct from u and such that (ui, vi) E E. Consider
the k-regular graph G.+a = (V', E'), where V', v' are external vertices, V' = V U f ', v'} and
E = E U { {u', u,),..., {UI', u1 }} U {{f', v,,. .I., {s', fV,}} - {{fU 1 , IV},..., {uh, I V}}. Figure 1 shows
the graph G.+3 in the neighborhood of u in the case k = 3. In [1], we show that the second
largest eigenvalue of the graphs (G,) is 2v/rT' + o(l), and so it is asymptotically optimal. As a
consequence the linear expansion is at least k/2. On the other hand, the expansion of the subset
{fU, u'} is clearly k/2, and so the linear expansion of the family (G.) is equal to k/2.

References

(1] N. Kahale. Better expansion for ramanujan graphs. In FOCS91, pages 398-404.

(2] N. Kahale. On the second eigenvalue and linear expansion of regular graphs. To appear in
FOCS92.

20-2_____



EFFICIENT TECHNIQUES FOR INDUCTANCE EXTRACTION OF

COMPLEX 3-D GEOMETRIES*

MATTrAN KAMONt

This abstract describes combining a mesh anal- where I. is the vector of source currents into each
ysis equation formulation technique with the node, A is called the incidence matrix, and V,
GMRES matrix solution algorithm to acceler- is the vector of reference node voltages. These
ate the determination of inductances of complex equations can be combined to give
three-dimensional structures. Results from FAS-
THENRY, our 3-D inductance extraction pro- (3) AZ;'A'V, = I,.
gram, demonstrates that the method is more than The right-hand side, I. is known and is mostly
an order of n.'.gnitude faster than the standard zeros except for the nodes corresponding to the
solution techniques for large problems [1]. conductor carrying a current of 1. To determine

Inductance extraction involves the determina- a column of the final impedance matrix, Z,, we
tion of the c x c frequency dependent impedance need only solve for V. and extract the appropriate
matrix, Z,, where c is the number of conduc- voltages.
tors. From the impedance matrix, the resistance In most programs, the dense matrix problem in
and inductance matrices are easily extracted. One (3) is solved with some form of Gaussian elimina-
approach to computing the frequency dependent tion, and this implies that the calculation grows
impedance matrix associated with the terminal be- as b3 . For complicated packaging structures, b can
havior of a collection of conductors involves first exceed ten thousand, and solving (3) with Gauss-
approximating each conductor with a set of piece- ian elimination can take days, even using a high
wise straight conducting sections. The volume of performance scientific workstation.
each straight section is then discretized into a col- The approach to calculating the frequency de-
lection of parallel thin filaments through which pendent inductance and resistance matrix de-
current is assumed to flow uniformly (2, 3]. The in- scribed above has some disadvantages if (3) is to
terconnection of these current filaments can be rep- be solved with an iterative method. It is difficult
resented with a planar circuit, where the n nodes to apply the iterative method, because the matrix
in the circuit are associated with connection points AZj1 A' contains ZT1 , which can only be com-
between conductor sections, and the b branches puted by forming the dense matrix Z,, and then
in the circuit represent the current filaments into somehow inverting it.
which each conductor section is discretized. The Another approach to generating a system of
system is assumed to be in sinusoidal steady-state- equations for the currents and voltages in the net-

Determining column i of Z, involves determin- work representing the conductor system discretiza-
ing the terminal voltages that result from setting tion is to use Kirchoff's voltage law, or mesh anal-
the current in conductor i to I and the rest to 0. ysis. KVL implies that the sum of branch volt-
To determine these voltages, one must 'solve' the ages around each loop in the planar circuit must
circuit described above. To begin, since each of be zero. These equations can be represented as
the filaments, or branches, can be approximated
by infinitely thin straight wires, one can compute (4) MV. = V. MtmI = Ib
directly the branch impedance matrix Zb to give where V. is the vector of source voltages inside each

(1) = Zb I loop and i, is the vector of mesh currents. These
yield

where Vb is the vector of voltages across each (5) MZ&M'lm = V..
branch and Ib is the vector of branch currents. The
usual approach is then to apply Kirchoff's current In this case, in order to find column i of the final
law and force the sum of the current to be zero at admittance matrix, Y, - Z-,"', one must solve for
each node. This set of equations can be written as In given V,. This time, V, will be 1 volt for the

mesh corresponding to all of conductor i and 0
(2) Alb = I. A'V, = Vb volts for all other meshes.

Notice that (5) does not involve Zý"1, so to
This work wa supervised by Prof. Jacob K. White speed up the computation, FASTHENRY uses the

and supported by DARPA contract N00014-91-J-1696, an conjugate-residual style iterative method, GMRES
NSF Fellowship, and grants from IBM and Digital Equip-
ment Corporation. [4]. Such methods have the general fbrm shown

MIT Room 36-888, E-mail: mattOrle.wImi.mit.eds below in Algorithm 1 for solving Az = b.

21-1



Filaments per Size of Solution time, Solution time,
conductor section MZMW (m) direct inversion preconditioned GMRES

1 35 0.0003 0.007
2 210 0.339 0.147
4 560 8.02 1.08
6 910 35.9 3.08
9 1435 135 7.85
12 1960 344 14.4

TABLE 1
Ezxection time comparison for the 35-pin package example. Execution times are in IBM RS6000/540 CPU minutes.

Future work using multipole algorithms will ex-SOLVINGT A = b). ploit the fact that the off-diagonal elements of Zb
are the partial inductances generated from inte-

0 grals of 1 [5]. Such methods will avoid forming

f or k = 0, 1, ... until converged and storing most of the entries in the dense ma-

Compute the error, r = b . Ax trix MZbM t , and reduce the cost of calculating

Find z err to minimize r kb1 matrix-vector products required for the GMRES

based on z' and i iz =r ,...,k procedure to order b operations.

REFERENCES

[1) M. Kamon, M. J. Tsuk, and J. White, "Efficient
The iterative algorithm can be accelerated by Techniques for Inductance Extraction of Complexmultiplying both sides of (5) by a preconditioner, 3-D Geometries," Proceedings of the Int. Cosf. onm ty Comp. Aided Design, November 1992, to appear.

which is a good approximation to (MZbM)- 1 . [2] W.T. Weeks, L.L. Wu, M.F. McAllister, andA. Singh,
For FASTHENRY, this preconditioner is formed "Resistive and inductive skin effect in rectangular
by directly inverting block diagonals of MZbM' conductors," IBM Journal of Re.. and Develop.,
and using those to form a block diagonal matrix vol. 23, pp. 652-660, November 1979.

the preconditionertofEah block dishosena mtocri [3] A. E. Ruehli, "Survey of computer-aided electrical anal-
as the preconditioner. Each block is chosen to cor- ysis of integated circuit interconnections," IBM
respond to only the meshes for a given conductor. Journal of Research and Development, vol. 23,

pp. 626-639, November 1979.
For a sample pin package from Digital Equi P- [4] Y. Saad and M. H. Sdndtz, "GMRES: A generalized

meat Corporation (Figure 1), FASTHENRY with minimal residual algorithm for solving nonsymmet.
the preconditioned iterative algorithm proved tic linear systemh," SIAM Journal on Scientific
much faster than direct inversion (See Table 1). and Statistical Computing, vol. 7, pp. 856-869,July 19N6.
As expected, the solution time for direct inver- (5] L. Greeng9rd and V. RokhLin, "A fast algorithm for
sion grew with m 3 but preconditioned GMRES particle uimulations," Journal of Comptataional
grew only as mi2 . For this small problem with Physics, vol. 73, pp. 325-348, December 1987.
only twelve filaments per section, the iterative al-
gorithm is already more than 23 times faster than
direct inversion.

Fla. 1. Half of a pin-connect structure. Thirty.five
pins sthown.

21-2



Logged Commit Dependencies for Highly Concurrent Databases

John S. Keen'
MIT Al Lab, NE43-614

johnkOai.mit.edu

June 12, 1992

Concurrent computers become increasingly attractive for transaction processing applica-
tions as throughput requirements continue to increase. Parallelism must be incorporated in all
aspects of database management system (DBMS) design. In particular, logging information
should be distributed amongst several disk drives, lest a single disk drive constitute a serial
bottleneck.

"Hot spot" objects are items in the database which are frequently updated. To ensure that
hot spot objects do not limit the maximum throughput for the entire system, a DBMS must
offer high throughput on each object. A transaction must first acquire an exclusive lock on an
object before it can update it. This lock serializes modifications by independent transactions,
but limits the rate at which successive transactions can access the object.

When a transaction has finished its work and wants to commit its updates, it makes a
request to the DBMS; this request is called a precommit. The DBMS appends a COMMIT
record for the transaction to the log. The DBMS waits until all log records have been written
to nonvolatile disk storage before it finally commits the transaction. A simple DBMS does
not allow a transaction to release any locks until after it commits, but this limits throughput
on any object to the rate at which blocks can be written to disk.

Previous researchers have proposed the precommitted transaction technique so that disk
I/O does not limit throughput on hot spot objects. A transaction 9l's locks are all released
immdiately after the transaction precommits. A subsequent transaction t2 can see Ul's up-
dates even though t1 has not yet committed, in which case it becomes dependent on t! to
eventually commit. The DBMS cannot commit t2 until after it has committed ti.

When log records are serially ordered in a single log stream, it is not difficult to ensure
that tl commits before t2 because Ui's log records will be written to disk before those of t2.
In a highly parallel setting, the DBMS may direct the log records from transactions t1 and t2
to different log streams. Unless the DBMS regulates the order in which blocks in different log
streams are written to disk, it is possible for all t2's log records to be written to disk before
those of ti. Recovery after a crash might incorrectly restore the updates by t2 while annulling
those of t1.

To prevent such anomalies, previous researchers have proposed that the DBMS regulate
the order in which COMMIT log records are written to disk. This solution is awkward be-
cause it introduces dependencies amongst log streams which would otherwise be independent.
Furthermore, a cyclic dependency amongst log streams would jeopardize the consistency of
the log information on disk, and so the DBMS must prevent the formation of cycles.

'Faculty Supervisor: William J. DOay
This research was supported in part by an NSERC 1967 Postgaduate Scholarship, by the Defense Advanced
Research Projects Agency under contracts N00014-88K-0738 and N00014-91-J-1698 and in part by a National
Science Foundation Presidential Young Investigator Award, grant MIP-8657531, with matching funds from
General Electric Corporation, IBM Corporation and AT&T.

22-1



An alternative approach [1] is to explicitly record dependency information in the log, so
that it is unnecessary to regulate the order in which records are written to disk at different
streams. When a transaction t precommits, a PRECOMMIT record is immediately directed
to some log stream. The PRECOMMIT identifies any previous transactions on which t de-
pends; it also identifies data objects (that were updated by t) for which the associated log
records have not yet been written to disk. The PRECOMMIT record can be written to disk
at any time. After a crash, a recovery program can examine the dependency information in
PRECOMMIT records to determine which transactions actually committed (i.e., had all de-
pendencies satisfied) prior to the crash. To make recovery more efficient, a separate COMMIT
log record is written for each transaction after it finally does commit.

Figure I illustrates an example in which there are four log streams. Data log records,
which record updates to objects in the database, are directed to the top two log streams.
Transaction log records record when transactions begin, precommit, commit and abort; they
are directed to the bottom two log streams.

in RAM WUf'f on diak

ALAML , ?4 PRCM LMJM -

son-*

Figure 1: Explicit Representation of Dependencies for Transactions

Preliminary analyses confirm the feasibility of this technique. Experimentation and eval-
uation of a working implementation on the J-Machine are goals for future work.

References

[1] John S. Keen. Logging and Recovery in a Highly Concurrent Stable Object Store. Technical
Report CVA Memo #37, MIT, May 1991. Revised November, 1991.

22-2



Monte Carlo Radiation Transport Simulation for Benchmarking Intel's
Touchstone Delta Machine

Thomas 1. Klemasl
tjk@abp.Ics.mit.edu

MIT Lab for Computer Science

Abstract

As science and technology advance, researchers are faced with larger and more
challenging problems. Often the number of calculations required to solve these problems
places great demands on computing resources and can require greater computational
power than currently exists. Thus, when new systems become available, it is important
for researchers to have some measure of the performance, cost effectiveness, and
usefulness of these machines. Benchmark codes provide a means of testing a machine's
performance on certain applications.

One application which places great demands on the performance of a computer is
the simulation of radiation transport. This project involves writing a Monte Carlo
simulation of radiation transport for benchmarking Intel's iPSC2, iPSC860, and
Touchstone Delta Machine. Since a significant number of Los Alamos National Laboratory
researchers use their computers to perform tasks that are very similar to those performed
by the benchmark radiation transport code, the results of this project will help those
scientists to evaluate the usefulness of Intel's line of parallel supercomputers.

The simulation of radiation transport is important. Scientists and engineers are
very interested in simulating particle transport within objects with which they are
working. For example, such a simulator would be very useful to engineers involved in the
design of a nuclear reactor. Through simulation of neutral particle transport one can
determine statistics regarding energy, weight, velocity, position, and flux of particles
with respect to position, as that particle travels through an object of an arbitrary
geometry and composition. Simulation is performed using standard Monte Carlo
techniques [1] based on probability distributions for the type and frequency of particle
interactions. The amount of data used to calculate the probability distributions for the
various media specified in a Monte Carlo radiation transport problem can be very large
(up to 80 Megabytes).

Intel's iPSC2, iPSC860, and Touchstone Delta Machine are message passing
computers. The Touchstone Delta [2] is the most recent of these machines and possesses
528 numeric nodes, each of which has up to 16 Megabytes of memory. (See figure 1.)
Thus, the machine has a total memory of approximately 8.4 Gigabytes, and its peak speed
is 42.2 Gigaflops for 32-bit floating-point operations. Message overhead is very large on
all of these machines, and the ratio of processor speed of the nodes to the communication
speed is highest on the Touchstone Delta. As a result, it is necessary to minimize
communication between the nodes in order to approach to maximum performance. This
restriction limits the types of problems that can take advantage of the computing power of
this machine.

As mentioned above, some Monte Carlo radiation transport simulation problems
can require up to 80 Megabytes of data. Since the node memory is only 16 Megabytes,
some communication among the nodes is necessary. In order to develop an approach

I- Thesis Supervisor: Prof. Gregory M. Papadopoulos. This project was initiated and

directly supervised by Mr. Olaf Lubeck, a research scientist at Los Alamos National
Laboratory in the C3 Group. Partial funding for this work was provided by Los Alamos
National Laboratory. MIT and Oakridge National Laboratory provide computing resources.

23-1



Touchstone Delta Machine

Mesh Mem2 Dimensional Mesh Interconnection Network
i C16 x 33 Mesh or Numer;r Nodes

NodeN94tNode528 Numeric Processors (i860's)

SOU le 16 Megabytes of Memory om each Numeric
C1 Chi hip Node

Reuling Routing RoufIng

Figure 1.
that minimizes this communication, we devised several strategies based on the fact that
the data can be divided according to energy levels; As a particle travels through a
material it loses energy, and only the data for its current energy level is required to
simulate its transport.

In the first approach the host of the parallel machine stores the entire data set in
memory. The broadcast of the data set to the nodes is divided into phases according to
energy ranges. Each node contains two buffers. One buffer is used in current calculations
while the other is filled by the host. This masks message latency with the tracking of
particles. Each node tracks all of its assigned particles until the energy level of all
particles have dropped below the lower bound of the current data set energy range. In the
meantime, the host broadcasts the data set for the next energy range to the alternate
buffer at each node. This process continues until all particles have been absorbed.

The second approach creates a pipeline among several processors which each have
one energy range of the data set. Particles are fed through the pipeline, passing to the
next node when their energy level falls below the energy range of the current node.
However, movement of particles through the pipeline is expensive because it requires
communication.

The last major approach creates groups of processors that share data and stores a
permanent energy range division of the data at each node as in the last method. However,
each node also caches a current energy range of data in its memory. Nodes in a group
would send requests to other nodes for a copy of required energy ranges and reply to
similar requests for copies of their own permanent data.

Currently, implementation of the first approach is nearing completion. The coding
challenge involved in each of these approaches is very similar. Thus, once one
implementation is complete, others will follow quickly. Results of performance analysis
will be compared to tests of versions of the Monte Carlo radiation transport simulation
running on other machines, including an ID implementation on the Monsoon Dataflow
machine and a Fortran version run on a Cray.

References

[I] L.L. Carter and E.D. Cashwell. Particle-Transport Simulation with the Monte Carlo
Method. ERDA Critical Review Series, Technical Information Center, Office of
Public Affairs U.S. Energy Research and Development Administration, 1975.

[2] Intel Supercomputers Division. A Touchstone Delta System Description, Intel
Corporation, 1991.

23-2



Small-Depth Counting Networks

Michael Klugerman* C. Greg Plaxtont

Mathematics Department Department of Computer Science
Massachusetts Institute of Technology University of Texas at Austin

Cambridge, MA 02139 Austin, TX 78712
klugermnQtheory .ics.mit. edu plaxtontcs .utexas.edu

The notion of a "counting network" was recently introduced by Aspnes, Herlihy, and Shavit [1],
where it was shown that such networks can be simulated efficiently on an asynchronous shared memory
machine to implement counters, producer/consumer buffers, and synchronization barriers. The counting
network provides a means for the processors of a parallel machine to obtain successive values from a
counter. These values can then be used to obtain unique keys to various resources shared by the
processors, to allocate tasks evenly among the processors, or to synchronize processors when necessary.

One solution to the counting problem is to use a single shared Fetch-and-Increment variable that
is incremented each time a processor makes a request. This can lead to high memory contention
when a large number of processors are making requests simultaneously. Counting networks provide a
means by which this contention can be significantly reduced and thus allow for a much higher degree
of concurrency. More specifically, a number of shared variables are used to implement a single counter
in such a way that contention is reduced and a processor incrementing the counter need only access a
small number of memory locations, thus providing fast response time and high throughput.

Counting networks are modelled after sorting networks [3] in that they are composed of 2-input 2-
output components called balancers (rather than comparators). A balancer takes in tokens along both
input wires and, acting like a toggle, outputs these tokens alternately along the top and bottom output
wires (see Figure 1). As in the case of a comparator in a comparator network, balancers are used to
construct a balancing network with an arbitrary number of input wires (and an equal number of output
wires) called a balancing network. A counting network is a balancing network such that regardless of
how many tokens are input on each input wire

1. The number of tokens output on one output wire is within one of the number of tokens output on
any other output wire.

2. The number of tokens output on any output wire W is at least as great as the number output on
any output wire located below W.

The counting network can be implemented in software on a shared memory machine by associating a
memory location with each balancer [1].

An important measure of the efficiency of a counting network is its depth. This is because the depth
of the network is equal to the number of memory locations that a processor must access before its
increment request has been fulfilled. In this paper, we present a number of constructions for counting
networks of small depth.

"Supported by the Defense Advanced Research Projects Agency under Contracts N00014-87-K-825 and N00014-89-J-
1988, the Air Force under Contract AFOSR-89-0271, and the Army under Contract DAAL-03-86-K-0171

tSupported by NSF Research Initiation Award CCR-9111591, and Texas Advanced Research Program (TARP) Award

#003658480.

24-1



Sequence of Sequence of Number of Number of

tokens input tokens output toket input tokms output

65310 -- * 0246 XGY0

42 -J-----135 Y,4ai

Figure 1: A balancer.

Aspnes, Herlihy, and Shavit [1] provide two O(lg2 n)-depth families of n-input counting networks by
proving that the balancing network isomorphic to Batcher's bitonic sorting network [2] and isomorphic
to the balanced periodic sorting network of Dowd, Perl, Rudolph, and Saks [4] are counting networks.
Later, Klugerman [6] gave an O(lg n Ig Ig n)-depth construction.

Our main result is a proof of the existence of an O(lg n)-depth counting network where n is the
number of input wires. This result answers the question posed in [1], which asks whether such an
optimal-depth counting network exists. The technique used to obtain this result involves constructing
a set of networks A(* such that for any fixed input sequence 1, if a network AN is chosen uniformly
at random from .A(, then N will count I with extremely high probability. "Good" networks are
then chosen non-uniformly from A(* and are used to construct a deterministic counting network with
logarithmic depth. The other result in this paper is an explicit construction of a counting network of
depth O(c'5 lg n) (for some positive constant c), which represents an improvement over previously
known constructions.

References

[1] J. Aspnes, M.P. Herlihy, and N. Shavit. Counting networks and multi-processor coordination. In
Proceedings of the 23rd Annual Symposium on Theory of Computing, pages 348-358, May 1991.

[2] K. E. Batcher. Sorting networks and their applications. In Proceedings of the AFIPS Spring Joint
Computer Conference, vol. 32, nages 307-314, 1968.

[3] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. MIT Press, Cambridge,
MA, 1990.

[4] M. Dowd, Y. Perl, M. Saks, and L. Rudolph. The balanced sorting network. 'Technical Report
DCS-TR-127, Department of Computer Science, Rutgers University, June 1983.

[51 M. Klugerman and C. G. Plaxton. Small depth counting networks. In Proceedings of the Twenty-
Fourth Annual ACM Symposium on the Theory of Computing, pages 417-428, 1992.

[6] M.R. Klugerman. Lecture 17: Counting networks. In F.T. Leighton, C.E. Leiserson, and N. Kahale,
editors, Research Seminar Series 15: Advanced Parallel and VLSI Computation, pages 153-161.
MIT Press, 1991.

24-2



Dynamic Alignment in SPMD Compilation'
Kathleen Knobe

kathykQai.mit.edu, NE43-630, 253-7710

1.0 Basic SPMD Compilation Strategy a the identity preference requires alignment of a defi-

The Single Program Multiple Data (SPMD) model nition with the use of the defined value (driven by data

of compilation is a straightforward approach suitable dependence analysis).

for a wide range of scientific applications written in * the conformance preference requires alignment of

Fortran targeted to massively parallel MIMD architec- an operation with its operands.

tures. According to this model the data is distributed When preferences conflict, some preference cannot

across the processors and all processors execute the be honored, and the semantics must be maintained by
same code, possibly following diferent control paths. communication. Since preferences are honored one byone in order of cost,' the communication that results
The computation is generally an alternating sequence from conflicts tends to be outside of loop nests.
of local computation and interprocessor communica- Instead of performing alignment by directives as in-
tion. dicated by the SPMD rule 1, processing the preference

The basic SPMD compilation strategy is character- graph performs alignment of source objects automat-
ized by the following four rules: ically.

1 - Alignment: 2.2 Scalars
Directives specify alignments of objects. One possible result of conformance preference pro-

2 - Scalars: cessing is called dynamic alignment, for example in
Scalars are "owned" by all processors. a(k) + b(j ,k) the vector a aligns with the jth row

3 - Control flow: of the matrix b. As j changes, the alignment of a
Every processor knows the global flow. changes.

4 - Intermediate operations: If a scalar is used in an expression with an array
The "owner" of the LHS performs operation on the section in a loop, for example, s + a(j) within a loop

RHS. on j, then a is dynamically aligned with respect to j.
Based on this analysis, the scalar s is not required to

Although these rules simplify compilation they live in all processors as it would in the SPMD approachplace significant limits on performance. We show be- based on rule 2. This analysis determines where each

low how analyzing where objects should live (Section scalar will live.

2) and analyzing how they arrive there (Section 3) im-

proves on these rules. 2.3 Control Flow
In the code

2.0 Alignment
if s thon

This section discusses how compiler determination a(1:20) = b(1:20) + c
of the alignment of objects improves on the four SPMD
compilation rules, even if there are tens of thousands of processors, only

2.1 Alignment of Source Objects those few involved in the assignment actually need to
2.1 Apinmenatiof Srcates t graphaknow the value of s. Optimization of the alignment of
Data optimirstion creates a graph among the tex- control variables to improve over the SPMD rule 3 is

tual occurrences of objects in the source. An edge be- supported by an additional preference:
tween two occurrences implies a "preference" to align * the control preference requires alignment of an op-
those occurrences. If such occurrences are not aligned, eration with the value that controls it (driven by con-
motion is required to align them. trol dependence analysis).

Two types of preferences are required for objects in In the code above the control variable is scalar and
assignment statements: the operation it controls has one dimension. The con-

'This research is supervised by W.J. Dally and supported trol variable may well be an array and may or may
In purt by the Defense Advanced Research Projects Agency not be the same shape as the operation. If the con-
under contracts N00014-88K-073S and N00014-91J.1696, by trol variable is not the same shape as the operation it
Air Force Systems under contract F19628-92-C-0045 and by controls it will be dynamically aligned.
a National Science Foundation Presidential Young Investigator
Award, grant MIP-866T531, with matching funds from General 2The cost used here is an estimate of the run time cost if
Electric Corporation, IBM Corporation, and AT&T. communication Is required to align data.

25-1



Control preferences are incorporated into the pref- d i
erence graph and are processed by the data optimiser do j =
with conformance and identity preferences. do k =

2.4 Intermediate Operations if control-expr(i,j,k) then
Consider the code fragment: =...

a(i,j,k) = b(ij) + c(i) a(i.j,k) = j * b(i.j) + a
eaddo

within i, j and k loops. According to SPMD rule enddo
4, for each iteration of the loop, the processor hold- enddo
ing an element of a will receive an element of b and
an element of a. Both the plus and the assignment
are performed there. However, we can improve per- Figure 1: Dynamic Alignment Example
formance by allowing the location of the intermediate
operation to be determined by the dynamic alignment In the SPMD model, the value of the control expres-
that results from conformance preference processing. sion is communicated to all processors at each itera-
O is dynamically aligned with respect to j aligning tion. c is communicated to all processors each time it
with each column of b. The sum, a two dimensional is redefined. j is communicated to all processors each
object, is therefore computed in the location of its b time it is redefined. One value of b is moved to one
operand. This sum is then dynamically aligned with element of a once for each iteration.
respect to k for the assignment. In the data optimisation model, c is hopping with

3.0 Communication respect to all three loop indices since its value may

The analysis above determines where scalars, array or may not be redefined from it previous value in its
sections, control variables and intermediate operations previous location. Therefore a is communicated from

will live at each point in the program, but how and one processor to another single processor at each it-

when they will arrive there is a separate question. eration. j is implicitly distributed and requires no

The communication required depends on how the communication. j * b(i,j) is computed in the pro.

object is used and on other code in the same loop cessors owning b(i.j) without communication. The

nest. A dynamically aligned scalar, for example, will product is be dynamically aligned with respect to k.

fall into one of the following communication categories: This product is not modified and so is replicated with

e privatized - no communication. The value in each respect to k. The result of the plus is also dynamcially

location is independent. aligned with respect to k and since it can be computed

a replicated - parallel prefix communication. The only upon arrival of c, it is also considered hopping.

value in each location is identical.
a hopping - one message from one processor for each References

iteration. The value in each location is determined
from the value in the previous location. [I] Kathleen Knobe, Joan D. Lukas, and William J. Dally.

e scanned - parallel prefix operation. The value in Dynamic alignment on distributed memory systems.
each location is computed by a simple associative op- In Proceedings of the Third Workshop on Compiler#
eration on the value in the previous location, for Perallel Computers, Vienna, Austria, July 1992.

* implicitly distributed - no communication. The Austrian Center for Parallel Computation.

scalar appears as the subscript of distributed arrays [2] Kathleen Knobe, Joan D. Lukas, and Steele, Guy L.,
and is not explicitly available. Jr. Data optimisation: Allocation of arrays to reduce

communication on SIMD machines. Journal of ParallelDynamically aligned sections, whether they appear and Dutn&tr~e4 Computinsg, 8:102-118, 1990.

as explicit operands, as the result of intermediate op-

erations or as control variables, also fall into the above [3] Kathleen Knobe and Venkataraman Natarajan. Date

communication categories.* The communication cat- optimisation: Minimizing residual interprocessor data
egorymforatin inteormediatess detemmine ythn cate- motion on SIMD machines. In Frontier. 'go: Theegory for an intermediate is de teri t e- Third Symposium on the Frontiers of Masivel Par.
gories of its operands. allel Computation, College Park, Maryland, Oct 1990.

4.0 Example University of Maryland.

Consider the example in Figure 1.
3 Notice that a scalar appears to be a section when it is dy-

namiicaly aligned.

25-2



The Anatomy of a Message Send

John Kubiatowicz*
NE43-629

kubitron@masala.lcs.mit.edu

1 Motivation Opcode 0
pcode I

Researchers in parallel computing generally agree that
it is important to support a shared-address space pro- Opcode 0-1

gramming model, where programmers see a global space Aenrth 0

of data objects without having to worry about explicit Address 1
data placement and code scheduling. Thus, much re- e i
search has been geared toward implementing this model
directly on shared-memory or message-passing hard- A n-i
ware. Unfortunately, each has its disadvantages, as well A n-i

as its advantages.

In a message passing architecture, each processor has Figure 1: Packet Descriptor

its own private address space, so that a global address
space must be synthesized by software which performs
object location and renaming, and which explicitly dis- mechanism (2]. The unique feature of Alewife is that
patches messages to fetch remote data. This can be the efficient message-passing mechanism needed to im-
prohibitively expensive in the general case. However, plement a shared-address space is made available to sys-
in those cases when the compiler has sufficient infor- tern software and user code via a simple interface. This
mation to manage data statically, it can bypass these permits compilers and runtime systems to bypass the
software layers and take complete advantage of the di- shared-memory mechanism and use explicit messages
rect, point-to-point messaging facilities which are di- when doing so is known to be more efficient.
rectly supported by the hardware.

In contrast, shared-memory architectures support a
global address space directly in hardware. Data loca- 2 Interface
tion and renaming are performed directly in hardware,
as is the launching of requests for remote data. How- Use of message-passing in a multiprocessor typically
ever, scalability concerns require the introduction of produces two classes of message traffic:
non-uniform memory access latencies and caching to
bolster system performance in the face of large network 1. Remote Procedure Invocation, involving short mes-
latencies. Caching, in turn, implies replication and a sages with values that are derived from processor
concomitant need for cache-coherence. The drawback registers, and
to this approach is that all communication proceeds 2. Block Data Transport, involving the transfer of
through reads and writes to shared memory; conse-
quently, even communication which is explicitly char- large blocks of data directly from memory at the
acterized by the compiler or runtime system still suffers source into memory at the remote.
the overheads of cache-coherence. The first arises from remote procedure calls, runtime-

Consequently, the MIT Alewife machine (1] pro. system management, and software-assisted dynamic
vides hardware support for a shared-address space cache-coherence[2]. Since these messages are quite short
while at the same time supporting a message facility (of the order of two to sixteen words), their support
as efficient as those found in contemporary message- requires an extremely efficient interface, both for the
passing architectures. Alewife supports a shared- transfer of data from registers, and for the launching
address space through a combination of hardware and of the resulting message. The second. type of message
low-level software, including a scalable cache-coherence traffic arises during data and object distribution, block

"This work was conducted by the Alewife Research Group, I/0, and software queuing of network messages. To sup-
supervised by Professor Anant Agarwal. The abstracted research port it efficiently, some form of direct-memory-access or
was funded by DARPA contract #N00014.87-K-0825 sad by by DMA must be available.
NSF grant #MIP-9012773.

26-1



Store 1 EA ET W
Store 2 EA LT bW
Launch W I Q2 I Q2

Next Instruction F I b I E I

Figure 2: Pipeline Diagram for Simple Message Launch

The Alewife machine handles both of the above If this option is chosen, the processor must write the

through a single, low-overhead interface(3]. Its net- starting address for DMA to a special controller regis-

work interface permits messages to be sent through ter before issuing the storeback instruction. Multiple

a two phase process: describe then launch. A mes- storeback instructions can be issued for a single packet

sage is described by writing directly to registers on the to scatter it to memory. Note that either of these store-
network-coprocessor, or Communications and Memory- back fields can contain a special "infinity" value which
Management Unit (CMMU). These writes proceed at denotes "until the end of the packet".
the same speed as cached writes. As shown in Figure 1,
the resulting descriptor can be up to 16 words long, and
consists of a variable number of explicit operands, which 3 Implementation
will be placed at the head of the message, followed by
a number of address-length pairs, describing data to be Figure 2 shows the pipelining for a simple, two-operand
taken directly from memory and concatenated to the message launch. Part of the latency here is the result of
end of the packet. The first word of a packet must have three-cycle stores in SPARC; a more aggressive proces-
a special format, the remaining words are software de- sor design would complete each store in a single cycle.
fined. The end of the E stage for the launch instruction is the

Once a packet has been described, it is then launched point at which the message is committed to the net-
via an atomic, single-cycle, coprocessor instruction, work. The W stage of the launch is required for the

The encoding of this instruction specifies both the num- coprocessor interface, while Q, and Q2 represent inter-
ber of explicit operands and the total length of the nal queueing cycles.

descriptor'. Both the user and supervisor are permitted The Alewife-1000 CMMU has been completely imple-
to send messages, although user-code is prevented from mented, and is in the final stages of testing. It consists
launching "machine critical" messages 2 . To provide of a lp, 3-layer metal, hybrid gate-array. Of the 14mm
atomicity between user and system code, a descriptor- x 14mm die, the network interface described above
length register keeps track of the number of message- consumes approximately 10mm 2 for random logic, and
descriptor registers which have been written since the 4.5mm2 for RAM. These numbers are pre-layout, sta-
last message launch; interrupt code which must send tistical estimates.
messages can save and restore the user's descriptor.

For efficient reception of messages, the Alewife inter-
face provides a 16-word, sliding window into the net- References
work input queue. On reception of a message, the
CMMU interrupts the processor while making the first (1] A. Agarwal et al. The MIT Alewife Machine: A
16 words of the packet visible in the reception window. Large-Scale Distributed-Memory Multiprocessor. In
The processor can examine words within this window Proceedings of Workshop on Scalable Shared Mem-
by reading coprocessor registers; as with the output in- ory Multiprocessors. Kluwer Academic Publishers,
terface, these reads complete at the speed of a cached 1991. An extended version of this paper has been
memory access. submitted for publication, and appears as MIT/LCS

Once the processor has examined the packet, it can Memo TM-454, 1991.

execute a special coprocessor storeback instruction to [2] David Chaiken, John Kubiatowicz, and Anant
remove data from the window. User-code may dispose Agarwal. LimitLESS Directories: A Scalable Cache
of user-generated messages. Encoded directly in store- Coherence Scheme. In Fourth International Con-
back instruction are two separate fields. First, is the ference on Architectural Support for Programming
number of words to be simply discarded from the head Languages and Operating Systems (ASPLOS IV),
of the window. Second, is the number of words (follow-. pages 224-234. ACM, April 1991.
ing those discarded) to be stored to memory via DMA.

[3] John Kubiatowicz. User's Manual for the Alewife
Note that the current implementation of the Alewife machine 1000 Controller. ALEWIFE Memo No. 19, Labora-

requires an even number of operands
2A set of message opcodes, including those used for cache- tory for Computer Science, Massachusetts Institute

coherence, are reserved for use by the supervisor, of Technology, January 1991.

26-2



Closing the Window of Vuln,-ability
in Multiphase Memory Tranl -tions

John Kubiatowicz, David Chaiken, and Anant Agarwal"

NE43-629
kubitron~masala.lcs.mit.edu

Multiprocessor architects have begun to explore sev- wb.w .erAnffwi
eral mechanisms such as prefetching, context-switching
and software-assisted dynamic cache-coherence. which
transform single-phase memory transactions in con- Phase Phase Phase
ventional memory systems into multiphase operations. RquW Respom. Access
Multiphase operations introduce a window of vulnera-
bility in which data can be lost before it is used either Figure 1: A basic multiphase transaction.
through protocol invalidation or cache conflicts. Los-
ing data introduces damaging livelock situations. This
abstract summarizes the work described in [1], which ing, weak consistency, multithreading, and software-
discusses the origins of the window of vulnerability and enforced coherence. All are variations on a central
proposes an architectural framework that closes it. The theme: they allow processors to have multiple out-
framework is implemented in Alewife, a large-scale mul- standing requests to the memory system. A processor
tiprocessor being built at MIT. launches a number of requests into the memory system

and performs other work while waiting for responses.Oneofen the majlorathrust of multanipsmsor thtredea This ability reduces processor idle time and allows the
has been the exploration of mechanisms that provide sse oices t tlzto ftentok

ease of programming, yet are amenable to cost-effective system to increase its utilization of the network.

implementation. To this end, a substantial effort has In a traditional shared-memory multiprocessor, re-
been expended in providing efficient shared memory mote memory requests can be viewed as split-phase
for systems with large numbers of processors. Many transactions, consisting of a request and a response.
of the mechanisms that have been proposed for use The time between request and response may be corn-
with shared memory, such as rapid-context switching, posed of a number of factors, including communica-
software prefetch, fast message-handling, and software- tion delay, protocol delay, and queueing delay. Since a
assisted dynamic cache-coherence enhance different w- simple single-threaded processor can typically make no
pects of multiprocessor performance; thus, combining forward progress until its requested data word arrives,
them into a single architectural framework is a desir- it spins while waiting. When the data word arrives,
able goal. the processor consumes the data immediately, possibly

Many of the mechanisms associated with shared placing it in the local cache.
memory attempt to address a central problem: access Rather than spinning, a processor might choose to do
to global memory may require a large number of cycles, other useful work. A processor with context-switching,
To fetch data through the interconnection network, the for instance, might switch to another context; a system
processor transmits a request, then waits for a response; with high-availability interrupts might execute service
thus, data accesses are split-phase. The request may be routines. Once we free the processor from spinning,
satisfied by a single memory node, or may require the however, we introduce a third phase of data transac-
interaction of several nodes in the system. In either tions, namely access (see Figure 1). The time between
case, many processor cycles may be lost waiting for a response and access, labeled as Phase II, reflects the
response. fact that the processor does not consume data imme-

To tolerate long access latencies, architects have diately upon its arrival. During this period, the dataTroptoleratnuber ong accshatnciems, achias ftecthav must be placed somewhere, perhaps in the cache or aproposed a number of mechanisms such as prefetch- temporary buffer. Note that a simple split-phase trans-

"*This work was conducted by the Alewife Research Group, action can be seen as a degenerate multiphase transac-
supervised by Professor Anant Agarwal. The abstracted research tion, with zero cycles between response and access.
was funded by DARPA contract #N00014-87-K-0825 and by by
NSF grant # MIP-9012773. The period between the response and access phases

27-1



of a primary data transaction is crucial to forward ferent approaches to solving the problems associated
progress. Should the data be invalidated or lost due with multiphase memory transactions. For example,
to cache conflicts during this period, the transaction is the Alewife architecture forces contexts to poll until
terminated before the requesting thread can make for- they complete their outstanding transactions. Alterna-
ward progress. Consequently, the period between re- tively, a system could eliminate the window of vulnera-
sponse and access is a window of vulnerability. Closing bility inherent in a polling model by signaling or reen-
the window of vulnerability involves ensuring forward abling a context immediately when its memory access
progress for multiphase memory transactions. completes. Such is the case in dataflow or message-

The consequences of lost data are more subtle and passing architectures. Polling has a smaller hardware

perilous than simple squandering of memory resources. cost and optimizes for the common case when average

There exist scenarios in which processors repeatedly at- remote access latency is shorter than polling frequency.

tempt to initiate transactions, only to have them can- This is true precisely when the window of vulnerability

celed during the window of vulnerability. In certain is long. Signaling is less sensitive to remote access la-

pathological cases, individual processors are prevented tency, but introduces additional hardware complexity.

from making forward progress by cyclic thrashing situ- System parameters or philosophy determine whether

ations. While such situations may be rare, they are as polling, signaling, or a hybrid approach is most appro-

fatal as any other infinite loop. priate.

The window of vulnerability is also opened by a class The associative thrashlock framework provides an in-

of mechanisms that circumvent the shared memory in- expensive solution to the window of vulnerability prob-

terface, in order to facilitate the efficient use of crit- lem in a polled system. The framework allows the use

ical multiprocessor resources. These mechanisms in- of caches to reduce the bandwidth required from the

clude fast I/O, interprocessor messages, synchroniza- interconnect, and it permits processors to store just

tion primitives, and extensions of the memory system enough information to recreate the pipeline state of a
through software. All may be supported by providing context when necessary. Instead of closing the window

processors with complete access to the interconnection of vulnerability by brute force, the Alewife architec-

network, and designing processors to be able to service ture dynamically detects the situations that can lead

asynchronous events rapidly (in tens of cycles). Since to deadlock and livelock. Only when these relatively
the ability to handle asynchronous messages quickly rare situations arise does the system close the window.

is crucial to system performance, processor interrupts The fundamental architectural trade-off pits hardware

that invoke message handling are high priority events, expense and complexity against exceptional events that
Unfortunately, such high-availability interrupts widen are uncommon, but potentially fatal.

the window of vulnerability by extending the period
of time that a processor must delay the completion of
memory transactions. References

This research identifies the livelock and deadlock
problems associated with the window of vulnerability, (1] John Kubiatowicz, David Chaiken, and Anantand specifies an architectural framework that solves Agarwal. Closing the Window of Vulnerability in

and pecfiesan rchiectralframwor tha sovesMultiphase Memory Transactions. In Fifth Interns-
those problems. A combination of multiphase mem- tipCnre or Transactions In for ero-
ory transactions and the mechanisms associated with tional Conference on ArchOtectural Support for Pro-
shared memory may be implemented using an approach Vramm tng Languages and Operating Systems (AS-
called associative thrashlock. Using this approach, the PLOS V), to appear. ACM, October 1992.
system keeps track of pending memory transactions in
such a way that it can dynamically detect and eliminate
pathological thrashing behavior. The framework con-
sists of three major components: a small, associative
set of transaction buffers that keep track of outstand-
ing memory requests, an algorithm called thrashwait
that detects and eliminates livelock scenarios that are
caused by the window of vulnerability, and a buffer
locking scheme that prevents livelock in the presence of
high-availability traps.

What is the appropriate amount of hardware re-
quired to close the window of vulnerability? It is pos-
sible to imagine architectures that take completely dif-

27-2



The Data Network of the Connection Machine CM-5
Bradley C. Kuszmaul'

NE43-237
bradley~lcs .mit.edu

The Connection Machine Model CM-5 Supercomputer is a massively parallel computer system designed to offer
performance in the range of 1 teraflops (1012 floating-point operations per second). The CM-5 obtains its high
performance while offering ease of programming, flexibility, and reliability. The machine contains three communication
networks: a data network, a control network, and a diagnostic network[1]. This abstract describes the organization of
the data network and how it contributes to the design goals of the CM-5.

The basic architecture of the CM-5 data network is a fat-tree. Figure 1(a) shows a binary fat-tree. Unlike a
computer scientist's traditional notion of a tree, a fat-tree is more like a real tree in that it gets thicker further from
the leaves. Processing nodes, control processors, and I/O channels are located at the leaves of the fat-tree. (For
convenience, we shall refer to all of these network addresses simply as processors.)

The CM-5 data network uses a 4-ary fat-tree, rather than a binary fat-tree. Figure 1(b) shows the interconnection
pattern. The network is composed of router chips, each with 4 child connections and either 2 or 4 parent connections.
Each connection provides a link to another chip with a raw bandwidth of 20 megabytes/second in each direction.
(Some of this bandwidth is devoted to addressing, tags, error checking, and congestion.) By selecting at each level of
the tree whether 2 or 4 parent links are used, the bandwidths between nodes in the fat-tree can be adjusted. Flow
control is provided on every link. Messages travel up the tree by an adaptive random strategy until they reach a least
common ancestor of the source and destination: Then messages travel down the tree following a determistic path.

The rest of this abstract describes three interesting issues: reflected in the design of the CM-5 data network.

* the fetch deadlock problem which is solved in the CM-5 by using a split network,
* the router done problem, which is solved by Kirchoff counting, and
* the timesharing problem which is solved by all-fall-down mode.

Fetch Deadlock Problem

The network has a contract with processors that guarantees all messages are delivered. The contract says, "The data
network promises to eventually accept and deliver all messages injected into the network by the processors and the
processors promise to eventually eject all messages from the network when they are delivered to the processors. " The
data network is acyclic from inputs to outputs, which precludes deadlock from occurring if this contract is obeyed. To
send a message, a processor writes the destination processor address and data to be sent to a memory-mapped outgoing
FIFO in its network interface. The processor then checks whether the message was accepted by the network. If not,
which may occur because flow control information indicates that the network has not removed enough of a previous
message from the outgoing FIFO, the processor can try again later. The processor may not block when attempting
to put a message into the network, however, because that would violate the contract. Instead, the processor must
attempt to receive any messages that have arrived. In the current implementation, the processor is involved in all
transactions with the network.

Although the simple contract above can implement the sending of data through the network in a deadlock-free man-
ner. it is not strong enough to allow some communication protocols to be implemented straightforwardly. For example,
suppose each processor wishes to fetch a value from another processor, and the processors have finite buffer space. One
processor may receive requests for data from many processors, but unfortunately, be unable to send responses because
its outgoing FIFO to the data network is busy. The outgoing FIFO will eventually free, according to the contract, but
only if the processor continues to accept delivery of messages from the network. A naive implementation of the fetch
protocol might break the contract and deadlock the system.

The CM-5 solves the fetch deadlock problem in a simple fashion requiring no bookkeeping and only constant buffer
space. Each processor has 2 outgoing and 2 incoming FIFO's in its interface to the data network: a left port and a
right port. The topology of the network is such that all links reachable from the left port are unreachable from the
right port and vice versa. Thus, the data network is really two independent, interleaved networks. To implement the
round-trip protocol, requests can be sent on the left side of the network, and responses returned on the right side. If
a processor cannot send a response on the right side and his constant-size buffer is full, he stops receiving on the left
side. Since any processor requesting data has a place to put it, however, the processors can satisfy the contract on the

1 Bradley C. Kuszmaul is a consultant to Thinking Machines Corporation and a graduate student in the MIT Laboratory for Computer
5,>iene \%lere he is being supervised by Charles E. Leiserson.

28-1



SPart. -- = •--Part. 2-u 4---/O-
(a) (b)

Figure 1: (a) A binary fat-tree. Processors are located at the leaves, and the internal nodes are switches. The hierarchical nature of
a fat-tree can be exploited to give each user partition a dedicated subnetwork which cannot be interfered with by any other partition's
message traffic.
(b) The interconnection pattern of the CM-5 data network. The network is a 4-ary fat-tree in which each internal node is made up of
several router chips. Each router chip is connected to 4 child chips and either 2 or 4 parent chips.

right side and the responses will eventually clear out. Because the responses on the right side will eventually clear out.
a processor can always eventually accept every request that arrives on the left side, and thus the processors satisfy the
contract on the left side. Consequently, deadlock cannot occur.

In fact, deadlock cannot occur even if responses are sent on both sides of the data network, as long as requests
are sent on one side only. The data network requires no more than two sides, even when there are many intermediate
destinations, because such a communication pattern can be broken into a collection of round trips.

Router Done Problem

The router-done operation is a specialized reduction that lets the processors know when communications involving the
data network are complete. In the data-parallel programming model, this operation is often required so that processors
know when it is safe to proceed to the next data-parallel operation.

The basic idea behind the implementation of router-done is "Kirchoff's current law." When all processors have
completed sending their messages and the number of messages that entered the data network equals the number that
have left, the routing cycle is complete. The network interfaces keep track of the number of messages that enter
and leave the data network. After a processor has completed sending all its messages, it pushes a message into the
outgoing router-done FIFO. When all processors have sent messages into their outgoing FIFO's, the control network
continually monitors the difference between the total number of messages put into the data network and the number
removed from the data network. When this number becomes zero, each processor receives a message in its incoming
router-done FIFO informing it that the data network is done routing messages. Using this "Kirchoff" method has
the additional benefit that if a hardware error causes messages to be lost or created, the error can be detected and
signaled. either by a failure of the router-done operation to complete on the one hand or by the unexpected arrival of
a message after the router-done operation has completed on the other.

Timesharing Problem

Each user partition in the CM-5 system is capable of being run in either a batch or a timesharing mode. The
requirement for timesharing raises the issue of what should be done with messages that are in transit in the routing
network when a user's timeslice has expired and another user must be given access to the partition. The system cannot
afford to wait until the user completes his communication, since t,. !ommunication may not terminate for a very long
time, and it in fact may not ever complete if the user has deadlocked himself.

This problem of swapping users is solved in the CM-5 by putting the data network into all-fall-down mode. Instead
of trying to route messages to their destinations, the network misroutes each one down through the network so they
are distributed evenly among the processing nodes. In the worst case, each node receives only a small number of
misdirected messages, even if all were headed for the same destination processor. The all-fall-down messages are
then saved in memory with the user's state. When the user's task is resumed, the system resends them to their
true destinations. Even if a timeshared user deadlocks, this context-switching mechanism precludes him from unduly
affecting the other users who are sharing his partition.

References

[1] C. E. Leiserson. Z. S. Abuhamdeh, D. C. Douglas, C. R. Feynman, M. N. Ganmukhi, J. V. Hill, W. D. Hillis, B. C.
Kuszmaul, M. A. St. Pierre, D. S. Wells, M. C. Wong, S.-W. Yang, and R. Zak. The network architecture of the
connection machine CM-5. In Symposium on Parallel and Distributed Algorthms '92, June 1992.

28-2



Highly Parallel Alpha-Beta Search

Bradley C. Kuszmaul'

NE43-237
bradley01cs .mit• edu

Alpha-beta search is an example of a very good serial algorithm for searching minimax trees, which are used
to model two-player adverserial games. Even though it looks like minimax tree search ought to be highly parallel,
researchers have had difficulty finding an algorithm that achieves good parallel speedup. We have been exploring a
new parallel algorithm for minimax tree search, and our results look very promising.

Figure 1(a) shows the standard sequential alpha-beta search algorithm. Note that /3 is a loop-invariant in the
body of the loop, and that if/ is infinite, then the loop will execute for each child regardless of what the subsearches
produce.

Alpha-beta search works the best when the tree is searched in the right order. A best-ordered tree is one in which
the first child is always the best (or sufficiently good to produce a cutoff). Figure l(b) shows Knuth's critical ireel1]
for a uniform tree of degree 3 and height 4. The critical tree can be thought of as the proof tree that the tree is
best-ordered, since to prove that the tree is best-ordered, the critical tree must be traversed.

This abstract describes two algorithms: Our non-strict parallel alpha-beta search uses non-strict procedure appli-
cation to implicitly take advantage of the critical tree. Our non-strict algorithm achieves very good parallel speedup,
but seems to have very poor space complexity. Our strict parallel alpha-beta algorithm makes explicit use of the
critical tree; We have some good theoretical space and time bounds for our strict parallel algorithm.

Non-strictness gives parallel speedup

Our first algorithm makes use of non-strict procedure application, supported, for example, by the Id programming
language. Non-strict application allows a procedure to start executing before all of its arguments are present. For
example, in the alpha-beta algorithm, observe that if we search a node, we will always search that node's first child,
regardless of what the values of a and 3 are. Also observe that if /3 = oo then it does not matter what the values
returned by the subsearches are (as long as they are finite values); All of the children will be searched. In fact, if, at
the root, a = -oo and /3 = oo, non-strict procedure application will expand precisely the critical tree.

Non-strict application will expand the tree in parallel, but the "max" operations and the comparisons of results
returned by subsearches form a serial dataflow graph of depth equal to the number of nodes in the tree. We use
a technique that we call fast minima: lookahead to propagate a bound for the values of a node up the tree. For
example, if you know that search(co) _< -v, then you know that you can achieve at least v at this node by choosing
co. (Remember that search(co) gives the value of co from your opponent's point of view. Thus an upper bound on
the value of co from your opponent's point of view is a lower bound on the value of co from your point of view.) If
you know that search(c1 ) > -vi for each i, then you know that search(n) < maxi vi.

Our algorithm expands the tree in parallel using a left-biased globally synchronous strategy. The parallel compu-
tation consists of a sequence of phases. During each phase, we expand the leftmost cP nodes that want to expand,
where P is the number of processors and c is some small constant, such as c = 10. We push the computation as far
as we can without expanding any more nodes, and then we synchronize and start another phase.

Our non-strict algorithm achieves good parallel speedup. Simulations for machines up to tens of thousands of
processors indicate speedups to within 50% of linear speedup if the search trees are at least an order of magnitude
larger than the number of processors. These simulations were done on synthetic game trees and on real chess trees.

However our non-strict algorithm apparently uses an unbounded amount of space. This happens when some
subtree of the search becomes serialized for a while and the processors start expanding part of the tree further to the
right. The newly expanded nodes produce a bound on the values of their nodes, but the nodes cannot be deallocated
because we may discover later that we need to further expand the partially evaluated tree. I.e., some nodes get stuck
where they have no more work to do, but they can not be deallocated. The number of stuck nodes can be very large,
especially in real chess trees. It is very difficult to analyse the space requirements of algorithms that use non-strict
procedure application.

For best-ordered trees, our globally synchronous algorithm apparently achieves very good space bounds, approx-
imately cdh nodes per processor, with a variation that is related to P.

We run out of memory with a left-biased asynchronous version of our algorithm. Our asynchronous variation
assigns each node of the tree to a processor. On each time step, each processor expands the leftmost node in its local

'This work is being supervised by Prof. Charles E. Leiserson, and is supported in part by the DARPA contracts N00014-89-J-1988
and N00014-91-J-1698

29-1



procedure search (n, rY, 3)
int bs;
b := -0;
if leaf?(n) then return staticeval(n); 2 2

for c, in children(n)
s := -search(c, -3, -a);
if s >, 3 then return s;
b := max(b, s);
a := max(a, s);

endfor;
return b; 2 2 3 3 2 2 2 2 2 2 3 3 3 3 3 3

end search;
(a) (b)

Figure 1: (a) The standard serial alpha-beta search procedure, expressed in the negamax form; The recursive call changes signs and
the order of the arguments, arid inverts the sign of the result. The node n is being searched with bounds alpha aid beta. If value(n) <= a
or 0 < value(n), we do not need an exact value for Y& - any returned value outside of (o, 03) is interpretted as "fail low" or "fail high".
Note that 03 is a loop invariant and that if 03 = co, the loop will execute over all the children of node n..
(b) The critical tree for a uniforin tree of height h = 4 and degree d = 3 with d[h/21 + dLh/2J - I = 17 leaves. The nodes down the left
spline are type 1 nodes. The "other" chiildren of type I nodes are type 2 nodes. The first child of a type 2 niode is a type 3 node. All of
the children of a type 3 node are type 2 nodes. The remaining subtrees below type 2 nodes are not in the critical tree; They are hopefully
pruned during alpha-beta search. In a best-ordered tree, exactly the critical tree is examined by alpha-beta search.

collection of nodes. In this case the variation in the number of frames needed grows with N, the number of nodes in
the tree, which is a large number. The variation causes us to run out of memory in some nodes.

The non-strict algorithm is currently implemented and running (out of space) on a Connection Machine CM-5
supercomputer.

Strict parallel alpha-beta search

We are currently examining a new algorithm which exploits some of the ideas from our non-strict algorithm, but
which should have practical space requirements. The main idea is to strictify the computation, without substantially
reducing the parallelism. Most of the parallelism was achieved by computing the bounds on the value of the nodes
without knowing the precise values of a and 03. We create new procedures that explictly search for a bound, based
on the empirical evidence that in chess trees, the first node considered is usually a good enough move to achieve
cutoff (failing high).

To evaluate a node for an exact value, evaluate the first child for an exact value v, and then evaluate all of the
other children, in parallel, to prove that they are worse than v. One variation on this algorithm simply searches the
first child of type 2 nodes and all the children, in parallel, of type 3 nodes. If the proof fails for some child ci, then
re-search ci for an exact value.

Our strict parallel alpha-beta search may do some extra work, because it may perform re-searches on certain
subtrees several times. We have several bounds on the amount of extra work that might be done.

"* For best-ordered trees, our algorithm does exactly the same amount of work as serial alpha-beta.

"* For worst-ordered trees, our strict algorithm does at most a factor of 2 more work than serial alpha-beta.

"* For any uniform tree of degree d and depth h, we do at most a factor of 2 extra work if h is even, and at most
a factor of d/2 extra work if h is odd.

"* We believe that there is a variation on the algorithm that does at most a factor of h/2 extra work for any tree
(but we have not shown this).

It has been shown that the left-biased globally-synchronous scheduling strategy will achieve very good space
bounds.

We are still working on our highly parallel alpha-beta algorithm, and it looks very promising.

References

[11 Donald E. Knuth and Ronald W. Moore. An analysis of alpha-beta pruning. Artificial Intelligence, 6(4):293-326,
Winter 1975.

29-2



Automatic Generation and Verification of Sufficient Correctness
Properties of Synchronous Array Processors

Stan Y. Liao
Room 36-888, Research Laboratory of Electronics

syliao@rle-vlsi.mit.edu

May 26, 1992

The ever-increasing demands for high performance in real-time signal processing and scientific compu-
tations have led to novel computer architectures, among which are array processors [5]. Many research
efforts have been devoted to systematically mapping high-level descriptions (such as recurrence equations
and dependency graphs) to array processors (e.g. [2] [6]).

As with other logic synthesis methods, although the circuits produced by these design methodologies
can sometimes be shown to be correct-by-construction, an independent verification is necessary to ensure
the correctness of the final design [4]. In this paper we present a strategy for automatically generating and
verifying sufficient correctness properties for synchronous array processors. The targeted circuits are array
processors designed from localized, highly regular dependency graphs (DGs), such as in [6]. For example,
Figure 1 shows a specification-implementation pair of an array processor for computing Gaussian elimination
on a 3 x 3 matrix and a 3-vector.

As in [1], we will take correctness to mean that the implementation is in /3-relation with the specification,
and we express sufficient correctness conditions as past-tense CTL formulae which can be verified by symbolic
model checking using binary decision diagrams (BDDs) [3]. The method presented in [1] is not directly
applicable to the verification of array processors, although we would like to use a compositional strategy for
array processors, too, because it greatly reduces the complexity of verification. Unlike microcoded processors,
array processors cannot readily be divided into datapaths and control circuitries. Each processing element
(PE) in an array processor has its local control and local datapath, and interacts with its neighbors. In
addition, since array processors perform special purpose computations, they are usually attached to a host
computer, from which they receive data streams. The host computer sends data to the array processor only
when computations need to be done in it, and the array processor may simply remain idle when it does not
receive any data from its host computer. In some sense the control signals from the host computer reside in
the data streams. This makes the separation of control circuitries and datapaths even more difficult.

This problem can be remedied by constructing an array of controllers that are connected in the same
manner, and an auxiliary machine, which is created solely for the purpose of verification. It usually consists
of a counter which keeps a timing reference, and some logic that generates control signals abstracted from
a typical data stream. For example, in the Gaussian elimination processor in Figure 1, the control signals
would be one of the following: marker (represented as an asterisk), "nothing" (represented by a dot), or
datum.

The sufficient correctness conditions for the controllers are then as follows:

1. Each PE receives a marker at the time indicated by the schedule in the specification. This ensures
that the connection between the PE are correct.

2. Each PE asserts correct control vectors at relevant time points.

This work is supervised by Professor Srinivas Devadas. It is supported in part by the Defense Advanced Research Projects
Agency under contract N00014-91-J-1698.

30-1



a 33 b2
a L3 

32 1123 b I
ba 31 a• 22 13' I t 

4 2 1 a12 ,
'St

aI

Figure 1: Dependency Graph and Implementation for Gaussian elimination

3. In each PE, the result of a computation needed for the next one is not corrupted until it is used.

CTL formulae representing these conditions can be automatically derived from the dependency graph.
These formulae are verified on the composite finite state machine (the auxiliary machine and the array of
controllers). Because each PE is not active for all time points during an instance of computation, we restrict
the traversal of the FSM to the set of states where the value of the counter in the auxiliary machine is
between the minimum and the maximum of the schedules assigned to the PE.

We will present the results for several examples in the talk at the workshop.

References

[1] F. Van Aelten, J. Allen, and S. Devadas. Compositional Verification of Systems with Synchronous
Globally Timed Control. In Advanced Research in VLSI and Parallel Systems; The 1992 Brown MIT
Conference, March 1992.

[2] D. G. Baltus. The Automated Synthesis of VLSI Array Structures from Algorithmic Descriptions. PhD
thesis, Massachusetts Institute of Technology, 1992.

[3] J. Burch, E. Clarke, K. McMillan, and D. Dill. Sequential Circuit Verification Using Symbolic Model
Checking. In Proceedings of the 2 7T" Design Automation Conference, pages 46-51, June 1990.

[4] A. Ghosh, S. Devadas, and A. R. Newton. Sequential Logic Testing and Verfication. Kluwer Academic
Publishers, 1992.

[5] S. Y. Kung. On Supercomputing with Systolic/Wavefront Array Processors. In Proceedings of the IEEE,
volume 72, pages 867-884, July 1984.

[6] S. Y. Kung. VLSI Array Processors. Prentice-Hall, Englewood Cliffs, N. J., 1988.

30-2



Concurrent Counting for Multiprocessor Load Balancing*

Beng-Hong Lim
545 Technology Square, Rm. 633

Cambridge, MA 02139
bhlim@mit.edu

1 Introduction 2 Experiments and Results

Dynamic load balancing can have a dramatic effect on We ran a series of simple benchmarks on a simu-
the performance of irregular parallel programs. Vari- lated 64-processor Alewife machine, a cache-coherent
ous schemes have been proposed for load balancing such distributed-memory machine supporting the shared-
programs. In this research, we consider the implementa- memory programming model. The experiments were
tion of two kinds of load balancing techniques on large- run on an accurate cycle-by-cycle simulator for the
scale multiprocessors: self-scheduling of DOALL loops Alewife architecture. A sample of results from these
and the task queue model in which processes dynami- experiments is presented in Figure 1 and described be-
cally insert and remove tasks from a shared queue. low.

The notion of shared counting is central to each of
these load balancing problems. Processes must coop- Counting Benchmark In this benchmark, 64 threads
erate to assign successive values from a given range: increment a shared counter 32 times each for a total of
either loop indices or slots in a queue. A common prob- 1024 increments. This provides a simple baseline for
lem faced by load balancing algorithms is contention at comparing counting techniques.
the shared counter. A good implementation should re- The first graph shows that at high levels of concur-
duce contention and allow high levels of concurrency. In rency the mounting network and combining tree outper-
this research, we consider the following techniques for form both spin locks and queue locks. This supports the
counting: (1) spin locks with exponential backoff, (2) intuition that as concurrency increases, locks need to be
Anderson's "queue" locks, (3) software combining trees distributed to avoid the detrimental effect of contention.
[2], and (4) "bitonic" counting networks [1]. (See [4] for The measurements also show that both combining trees
a study of the locking techniques.) and counting networks scale at about the same ratc.

This research makes the following contributions. This is an encouraging result for counting networks be-
Each of the counting techniques we consider has been cause software combining trees are considered the best-
independently proposed as a way to alleviate contention known method for updating a shared counter without
in highly concurrent systems. Here, for the first time, explicit hardware support for combining.
they are compared directly on a realistic large-scale
distributed-memory multiprocessor. Moreover, this Self-Scheduling Benchmark To model self-scheduling,
work is the first systematic experimental exploration of n processes execute 2048 increments on a shared
counting network performance on a distributed memory counter. Between each increment, each process pauses
machine, for a duration randomly chosen between 0 and 1000 cy-

In the rest of this abstract, we will briefly describe the cles. The increment models a process obtaining an iter-
experiments that we ran, and present a small sample ation, and the random pause represents the execution
of results that we obtained. More details about the of that loop iteration.
counting techniques and results can be found in [3]. The second graph compares the performance of spin

locks, combining trees, and counting networks on this
"*Based on joint work with Maurice Herlihy and Nit Shavit. benchmark. We see again that spin locks do not scale
Faculty Supervisor. Prof. Anant Agarwal. beyond a certain number of processors. Both the com-
The researdcr reported here was supported in part by NSF Exper-
imental Systems grant # MIP-9012773, and in part by DARPA bining tree and counting network allow speedups on the
contract # N00014-87-K-0825. benchmark all the way up to 64 processors.

31-1



54000

1200 C~s" * Cve
cCNdplq 0 cneqiej

1o Cobnngt 30M 3W0

25W250

2000

9WO

1500 1500,

1000 1000

0 oL 0 I I1
0 10 20 30 40 50 00 0 10 20 30 40 50 60 0 10 20 30 40 50 60

Confu/fency Concum"CY Concunrren

Counting Benchmark ShN-Scluling am ffa* Task,-Oueu. Senchime

Figure 1: Elapsed times of benchmarks measuring the scalability of techniques for concurrent counting.

Task-Queue Benchmark For this benchmark, n pro- concurrency increases. This degradation occurs because
ceases repeatedly (1) dequeue a task from a shared counting using locks is inherently sequential.
queue, (2) pause for a duration randomly chosen from Both counting networks and combining trees substan-
a uniform distribution between 0 and 1000 cycles, then tially outperform the locking methods by both reducing
(3) enqueue a new task. The queue itself consists of a contention and taking advantage of concurrency. We
buffer, a head counter indicating the first full slot, and also found that combining trees are sensitive to vari-
a tail counter indicating the first empty slot. A process ations in the inter-arrival times of increment requests,
dequeues a task by atomically incrementing the head thus making counting networks an attractive choice for
counter and removing one task from the corresponding implementing concurrent counting.
buffer slot. Enqueues are performed analogously. The
benchmark halts when 1024 tasks have been dequeued
and executed. References

The third graph shows that the combining tree and
counting network of width 16 have equivalent perfor- [1] J. Aspnes, M.P. Herlihy, and N. Shavit. Count-
mance at low levels of concurrency. We also see that the ing Networks and Multi-Processor Coordination. In
counting network of width 8 has the best performance Proceedings of the ryrd Annual Symposium on The-
at low levels of concurrency, i.e., when the arrival rate or of Computing, May 1991.
of increment requests is low. [2] J.R. Goodman, M.K. Vernon, and P.J. Woest. Ef-

At higher levels of concurrency, the counting network ficient Synchronization Primitives for Large-Scale
outperforms the combining tree and scales less errati- Cache-Coherent Multiprocessors. In Proceedings of
cally. The reason for this is that the combining tree is the 3rd ASPLOS, pages 64-75. ACM, April 1989.
sensitive to the arrival times of increment requests at a
node. If two arrivals at a node do not arrive sufficiently [3] Maurice Herlihy, Beng-Hong Lim, and Nir Shavit.
close enough to each other, combining does not occur Low Contention Load Balancing on Large-Scale
and the opportunity for parallelism is wasted. Multiprocessors. In Proceedings of the Pth Annual

Symposium on Parallel Algorithms and Architec-

3 Conclusions tures, June 1992.

[4] John M. Mellor-Crummey and Michael L. Scott. Al-
Although the two locking techniques are known to gorithms for Scalable Synchronization on Shared-
scale well on small-scale, bus-based multiprocessors, otqr Memory Multiprocessors. ACM Transactions on
experimental results show that their performance de- Computer Systems, 9(1):21-65, February 1991.
grades in a distributed memory machine as the level of

31-2



AN IMPLICIT PARTICLE METHOD FOR MONTE CARLO DEVICE
SIMULATION

JENNIFER LLOYD t

This abstract presents a new method for integrating the semiclassical motion equations
applied to transient Monte Carlo semiconductor device simulation.

Ensemble Monte Carlo simulation entails tracking the evolution of a system of particles
in space and time. This motion, in the abscence of collisions and magnetic fields, is described
by the semi-classical motion equations:

(1) v.(k) = •Vkcn(k)=(v)(k)

die
(2) h- = -qE

dt

where r is the position of a particle, k is the wavevector, h1 is Planck's constant, 4(k) describes
the band structure of the semiconductor, q is the magnitude of the electronic charge, and E
is the electric field on the particle. These equations are typically discretized with an explicit
time-integration scheme, so that the electric field used to compute the particle positions is
based on a calculation at the current timestep [1, 2].

ALGORITHM 1 (IMPLICIT DIRECT-FORCE ALGORITHM).

Initialize particle positions, r9, velocities v,.
For k = 1 to number-of-timesteps of size h

For i = 1 to number-of-particles I
Compute explicit position, r,(t + h) = ri(t) + hv,.

For j = I to number-of.relaxation-iterations
For i = 1 to number-of-particles N

For n = I to number.ofNewton-iterations
Compute E, contribution from the doping charge.

Compute Ei contribution from the mobile charges.
Compute Jacobian matrix and Newton right hand side.
Compute position update, 6,, using lewton.

Update position, r,(t + h) = r•(t + h) + 6,.

For i = I to number.of-particles I
Update velocity, vi(t + h) = v,(t) - 1L [E(t) + E,(t + h)].

FIG. 1. The implicit Monte Carlo algorithm using direct force electric field calculations.

Another approach is to instead discretize the motion equations with an implicit multistep
method, so that the electric field used to compute the new particle position is a function of the
electric field at the next timestep. Assuming a parabolic band structure and particle effective
mass mr, so that !- = v ", the motion equations become:

h
(3) r,(t + h) = r,(t) + ( [v,(t) + t,(t + hA)]

* This work was supervised by Prof. Jacob K. White and supported by DARPA contract N00014-91-J-1698
and NSF contract MIP-8858764 A02.

Research Laboratory of Electronics, Dept. of Electrical Engineering and Computer Science, Massachu-
setts Institute of Technology. Cambridge, MA 02139. E-mail: jenOrle-ilis.mit.eds

32-1



hq
(4) v,(t + h) = v -(t) [E(ri(t)... rn(t)) + E(r-(t + h)-... r(t + h))]

when integrated with the energy-preserving trapezoidal method. This set of equations is
implicit and non-linear, and must be solved at each timestep for each particle. Since there
is a non-linear system of equations associated with each particle, a Gauss-Seidel relaxation
is used to iterate for the particle position updates at each timestep. Within the relaxation
scheme, the update for each particle requires solving a three-dimensional problem for which a
Newton's method is employed. The algorithm for the new computation is given in Figure 1.
The combined relaxation/Newton technique used to solve the implicit problem is robust, and
converges within a few iterations of the relaxation (combined with 1 Newton iteration.)

The rationale for using an implicit instead of an explicit method is that the implicit method
captures the fact that for large timesteps the particle's electric field will change over the
timestep period. Using an explicit method, the electric field used to determine the particle's
movement can easily be incorrect. On the other hand, an implicit method makes a correction
to this error by using the average electric field over the time-step, thus making it more un-likely
that a particle will ever get too close (and see a large force from) another particle.

For simulations of an ensemble of particles, our results indicate that implicit methods
show less timestep dependence and more accuracy than explicit methods. This is seen by
examining the normalized average temperature of the ensemble over the simulation time, as
shown in Figure 2 for both an implicit and an explicit method. Using the explicit method, the
total energy of the system grows without bound for large timesteps, although for small enough
timesteps, the solution will approach that of the ideal solution. However, by using an implicit
method, the total energy of the system remained stable over time, so that the temperature is
bounded.

Additionally, increasing the number of simulation particles does not change the stability
of the time-integration problem, but does smooth out the variations in the simulation results
(e.g. temperature and current.) A rather large number of particles is actually required to
accurately simulate these systems, although a small number of particles can be used to show
trends in the numerical methods.

140 - b-I US-14 - bLb-i4S...... I-k 1 htl ..1
b.1 0. " 4

120 .... b4.-14 4 -. b.- 4
Innni

-I- L3

i2

40

0 a] 44 &6 as I 1. iA 0 0. UA a6 as I 13 IA

FIG. 2. Simulation results showing the temperature growth over time with both explicit and implicit
simulations, respectively, for several timestep sizes (in seconds).

REFERENCES

[1l M. FIscH-TTI, S. LAUX, AND W. LEE, Monte Carlo Simultation of Hot-Carrier Transport in Real
Semiconductor Deuices, Solid State Electronics, 32 (1989), pp. 1723-1729.

[21 E. VENTURI, E. SANGIORGI, R. BRUNETTI, W. QUADE, C. JACBONI, AND B. Ricco, An Efficient Monte
Carlo Simulator for High.Energy Electrons and Holes in MOSFET's, in Proceedings of the IEDM,
1990.

32-2



Fault-Tolerant Sorting Circuits

Yuan Mao

Room 2-342, MIT
yuanOmath.mit.edu

We study fault-tolerant sorting circuits under 2 types of fault models in both adversary and random cases.
A passive-faulty comparator outputs 2 numbers in the wrong order iff the 2 numbers are input in the wrong
order. A destructive-faulty comparator outputs 2 numbers in the wrong order independent of the input
order. A circuit is called random-fault-tolerant if it works (reasonably) well with probability at least 1 -
for some constant a (so-called high probability) even when each comparator is independently faulty with a
constant probability. A circuit is called k-adversary-fault-tolerant if it works (reasonably) well as long as the
total number of faulty comparators is smaller than or equal to k. We will use N to denote the total number
of inputs to a circuit.

1 Previous Work on Fault-Tolerant Sorting Circuits

Yao and Yao (61 were the first to study fault-tolerant sorting circuits under passive fault model. An easy
and natural way to derive passive-fault-tolerance is to replicate each comparator for sufficiently many times.
The most interesting and natural question is if one can do anything better. For the adversary passive faults,
previous work (4] (5] (6] focused on how to tolerate only constant number of faults effectively. When k is
not a constant, the simple replication technique implies a trivial O(log N + k log N) upper bound on the
depth of k-adversary-passive-fault-tolerant sorting circuit, but no one knew if there existed any such circuit
with o(log N + k log N) depth. For the random passive fault, Yao and Yao asked what is the optimal size
of a random-passive-fault-tolerant circuit for sorting or merging. The trivial fl(N log N) and O(N log2 N)
(achieved by replication) remained the only bounds for Yao and Yao's question on both sorting and merging,
even though many authors had been working on this subject. In other words, like in the adversary case, no
one knew if one could do anything better than the simple replication.

Assaf and Upfal [1] introduced the destructive fault model. Under both passive and destructive fault models,
they studied the random-fault-tolerant sorting problem in a more powerful network model other than the
classical circuit model. The main reason they switched to that model is that the classical circuit can not
sort everything exactly to the correct position with a good probability when destructive faults are allowed.
(Please note that the replication technique does not work under destructive faults.) In fact it was showed
in (31 that under destructive fault model, in any circuit of any depth, with high probability at least one
output is fl(log N) away from its correct position. Leighton, Ma and Plaxton (3] took another approach
to study random-destructive-fault-tolerant sorting circuits. They restricted their attention on the circuit
model, but instead of insisting that the faulty circuit be an exact sorting circuit, they only required that the
faulty circuit be a near-sorting circuit which should output every item to within O(log N) (optimal) from
its correct position. They showed an O(log3 N) upper bound and an fl(log2 N) lower bound on the depth of
such near-sorting circuits. (For the upper bound, they need to assume that the fault probability is sufficiently
small.) They left open the question that if O(log2 N) is indeed the tight bound. For the passive fault, they
constructed an O(log N log log N) depth circuit which sorts any given permutation (but not necesarily all
permutations) with high probability. This is a very important progress on Yao and Yao's question, but does

"Soam of the result ar joint work with Yuan Ma's advisor Professor Tom Leigham. This researc is supported in part by
MIT Applied Mathemawia Fellowship.

33-1



not answer it since that question is on the pasive-fault-tolerant sorting (or merging) circuit which works on
all (possible) input permutations.

2 New Results

(1) We show that the work of [3] on passive fault actually implies an O(logN log log N) depth random-
passive-fault-tolerant merging circuit. This settles Yao and Yao's open question on merging to within an
O(log log N) factor.

(2) We build a random-destructive-fault-tolerant-near-sorting circuit with the optimal e(log2 N) depth. As
in [3], we need to assume that the fault probability is sufficiently small in order to prove the upper bound.
This answers a question which was left open in [3] and posted again in [2].

(3) We construct a k-adversary-passive-fault-tolerant sorting circuit of O(k log log N + log N) depth. Note
that (Q(k + log N) is an easy lower bound on the depth of such circuit. Hence our circuit has the optimal
0(log N) depth when k = 0(log NI log log N). On the other hand, when k = O(NO) for some constant a, we
have another construction which achieves the optimal 0(k) depth. These two results are the first k-adversary-
passive-fault-tolerant sorting circuits of optimal depth for non-constant k. Also we have a new construction
of so-called correction-network which can be used to tolerate constant number of faults effectively. Even
though the construction in [5] is already asymptotically optimal, our construction is simpler and of fewer
number of comparators.

(4) We construct a k-adversary-destructive-fault-tolerant near-sorting circuit of 0(k log(N/k)) depth and
show that this is indeed optimal. Here near-sorting means to output everything to within (optimal) k away
from its correct position. The key of this result is an interesting lower bound proof which gives a lot of
insight on the structure of any destructive-fault-tolerant sorting circuit and somehow motivates our other
work on destructive fault model. No result was previously known on adversary destructive fault.

Our results are summarized in the following table.

passive destructive
random O(log N log log N) E(log2 N)

(for merging circuit only) (when fault probability is small)
adversary 0(k log log N + log N) 1(k log(N/k))

The bounds on the depth of fault-tolerant circuits. The bound under
random-passive fault is for merging circuit, the rest are all for sorting or near-sorting circuit.

References

[1] S. Asaf and E. Upfal. Fault tolerant sorting network. In Proceedings of the 32st Annual IEEE Symposium
on Foundations of Computer Science, pages 275-284, October 1990.

[2] T. Leighton, C. Leiserson, and N. Kahale. Research Seminar Series 15: Advanced Parallel and VLSI
Computation. MIT Press., 1991.

(3] T. Leighton, Y. Ma, and G. Plaxton. Highly fault-tolerant sorting circuits. In Proceedings of the 31st
Annual IEEE Symposium on Foundations of Computer Science, pages 458-469, October 1991.

[4] L. Rudolph. A robust sorting network. IEEE Transactions on Computers, C-34:326-335,1985.

(51 M. Schimmler and C. Starke. A correction network for n-sorter. SIAM J. Comput., 18:11i79-1187, 1989.

[6] A. C. Yao and F. F. Yao. On fault-tolerant networks for sorting. SIAM J. Comput., 14:120-128, 1985.

33-2



Reduced-Latency Memory Assignment
for Multiprocessor Caches

Marios Papaefthymiou Anant Agarwal John Guttag

MIT Laboratory for Computer Science
Cambridge, MA 02139

Multiprocessors that support a shared-memory programming model provide the abstraction of a single
coherent memory that is equally easily and equally efficiently accessible by multiple processors. Typically, the
shared-memory abstraction is implemented by a large amount of physical memory that is accessed through
a network. In bus-based machines, the memory is implemented as a single module accessed over the bus,
while in most large-scale machines the memory is physically distributed among all the processing nodes.
Virtually all machines that support the shared-memory programming abstraction provide local caches at
each processor. Caches automatically replicate memory locations close to the processor and avoid expensive
network traversals for most memory accesses. In this paper we are concerned with compile-time techniques
that can be used to achieve better performance by improving cache utilization. Specifically, we investigate
the problem of assigning data blocks to memory in a way that will minimize the impact of collisions in direct-
mapped multiprocessor caches. We characterize the problem in precise mathematical terms and present an
efficient orocedure for finding approximate solutions to it. The procedure incorporates a new technique, grey
coloring, that reduces latency in the presence of collisions by distributing cache misses among processors.

Tod-.y, most large caches are direct-mapped. In a direct-mapped cache, each line in the main memory
corresponds to a unique entry in the cache memory. If the cache has a total of S lines, this entry is specified
by the log2S low order bits of the line's address in the main memory. The problem with a direct-mapped
cache is that if a processor's working set includes two or more locations in the main memory that correspond
to the srne entry in the cache, then there is a conflict that leads to cache misses. Whenever a miss occurs,
the proc:essor must wait for a line to be read from main memory into the cache, and consequently, as the
number of misses in each individual cache increases, the overall latency of a computation also increases.

In thiis paper we are concerned with the problem of minimizing the impact of cache conflicts. We deal
with co iflicts between blocks of data, as opposed to conflicts between individual cache lines, because data
blocks allow a compiler to exploit the locality of reference exhibited by most programs. Specifically, we
are giv n a set D of memory-resident data blocks and a set C of direct-mapped caches. In each cache we
must s )re a subset of D, and each cache can hold up to k data blocks. A data block may have to be
stored ;n multiple caches. We want to find an assignment of the data blocks to the main memory such
that the maximum number of conflicts in any cache is minimized. Consider, for example, the execution of a
paralle: program running on three processors P0, P1, and P3, as illustrated in Figure 1. Assume processor
P0 accesses data blocks a and b, P1 accesses data blocks b and c, and P2 accesses c and d. In addition,
assume that each processor accesses an identical code segment z, and that no more than three data blocks
can fit in any cache. The memory assignment shown in Figure 1(a) results in conflicts between b and c in the
cache associated with processor P1. There exists a conflict-free assignment, however, which is illustrated in
Figure 1(b). We show by reduction from graph k-colorability that even the restricted problem of finding a
conflict-free assignment is A/P-complete. Thus, we try to find approximate solutions to the general memory
assignment problem using efficient heuristic techniques.

Our basic strategy is illustrated in Figure 2. Data blocks a, b and c have been assigned in memory without
cache conflicts as shown in Figure 2(a). If some data block d is accessed by caches CO and C1, however, no
conflict-free assignment is possible. In this case, either P0 or P1 will have to wait until the I lines of the data

M;ario Papaefthymiou is supervised by Prof. C. E. Leiserson. This research was supported in part by NSP under grants MIP
9012773 and 9115797-CCR and in part by the Defense Advanced Research Projects Agency monitored by the Office of Navsl
Research under prants N00014-91-J-1698 and N00014-S9-J-1968. Authors' e-mail addresses are mariosGthsory.lcs.&it.,du,
sgsrwv.a1lcs.ait .edu, guttagacs.it.i.du.

34-1



MEMORY MEMORY

lb ja k I a lb

NETWORK( NETWVORK(

co C1 C21 CO C1l C

b 7b' a C

ab

(a) (b)

Figure 1: (a) A conflicting assignment. (b) A conflict-free assignment.

cO C1 C2 Co C¢ C2

(a) (b)

Figure 2: (a) A situation where a conflict-free assignment is impossible if, for example, caches CO and C1
access a data block d. Any non-overlapping assignment of d in memory will result to I conflicting lines in
some cache. (b) A partially overlapping assignment obtained after grey coloring. The maximum number of
misses in any cache is at most 1/3 lines.

block are read from the main memory. By allowing data blocks to partially overlap, however, we can find
an assignment that results to at most 1/3 conflicting lines per cache as shown in Figure 2(b). Our procedure
operates in two phases and runs in O(DI) steps. We begin by encoding the dependencies among the data
blocks in a conflict graph G, such that a coloring of G with h colors yields automatically an assignment of
memory locations to the data blocks. The first phase of our strategy computes a k-coloring for a maximal
subset of G. If G does not have any particular structure that allows us to color it efficiently, we apply a
minor variation of the general graph-coloring scheme that is used in the context of register allocation for
sequential processors. Any vertices that are left uncolored correspond to unassigped blocks, which are placed
in memory during the second phase of our procedure. The goal of this phase, which we call grey coloring,
is to insert the unassigned blocks in a way that minimises the number of conflicts in any single cache. The
key idea is to place blocks in such a way that they straddle cache slots. Since cache slots contain parts of
multiple blocks, they can be thought of as having a mixture of colors, hence the name grey coloring.

References
(11 A. Agarwal, J. Guttag, M. Papaefthymiou. "Reduced-Latency Memory Assignment for Multiprocessor

Caches," unpublished manuscript, February 1992.

34-2



Performance Assertion Checking

Sharon E. Perl*

MIT LCS, NE43-520A
sharonI@lcs.rnit.edu

Systems often develop performance bugs that normal system use to determine whether
go unidentified for long periods of time. By per- performance is meeting expectations and
formance, I mean some measure of resource usage whether workloads satisfy the assumptions
in the system. A performance bug is a failure that were made during system design.
of the system to meet the performance expec-
tations of its implementors. Performance asser- 9 Performance debugging: successively more
tion checking is an approach and a related set detailed performance assertions may be help-

of tools for performance debugging and testing ful for pinpointing the location of perfor-
that addresses the problem of uncovering perfor- mance problems in the system.
mance bugs in a timely fashion [1]. The key idea In addition, the act of writing performance asser-
is to have implementors write down their perfor- tions forces an implementor to think clearly and
mance expectations precisely, and in a way that precisely about the performance of the system.
permits automatic checking. Information about a The PSpec language is based on the notion of a
program's execution that is relevant to its perfor- monitoring log as a sequence of primitive compo-
mance is captured in a monitoring log, generated nents cafled events. An event has a type (name),
when the program runs. The user of the tools neit caled ntAeven atte (na ,writs aperormncespeifictio, cnsitin of a list of named, numeric-valued attributes, and,
writes a performance specircation, consisting of possibly, a timestamp. A specification writer
a set of performance assertions which are predi- identifies the event types of interest for a par-
cates that are expected to hold for the monitoring ticular specificr "-ion; these events have a direct
log. The specification is expressed in the PSpec correspondence with the events appearing in a
performance specification language. monitoring log.

Performance assertions provide a means of fil- While events contain useful information, of-
tering large quantities of performance data to fo- ten it is necessary to work with subsequences of
cus attention on the data that indicate potential events in a log when writing assertions. For ex-
problems in a system. This is useful for several ample, we may be interested in writing assertions
kinds of performance-related activities: about the elapsed time between two events that

" Performance regression testing: once the delimit an operation in the program, or we may

performance of a program is understood, it be interested in checking whether some particu-
can be captured with a set of performance lar event occurs during an operation (perhaps a
assertions. When the system is changed, the cache hit during a file system read operation). For
assertions can be rechecked to ensure that this reason the PSpec language has the notion of
the performance still meets expectations. an interval.

An interval corresponds to a subsequenre of a
"* Continuous system monitoring: performance log starting at some start event, ending at some

assertions can be checked routinely during end event, and including all events in the log
between them. Like events, all intervals are of

"This research was supervised by Prof. William E. some named interval type. Just as an event type
Weihi and was supported by the NSP under rant CCR-
8716884, by DARPA under contract N00014-89J-1988, -ad has named attributes, an interval type has named
by Digital Equipment Corporation. metrics that record values of interest (not neces-

35-1



sarily numeric) for intervals of the type. Metricstieevn tf (d)
are computed from the events that comprise an Itn(i)
interval. While the set of event types available in inevl Int~ian (pd)
a specification is determined by the contents of a a naf
log, the specification writer has complete freedom a: IntOtfhr apd= ~i
to declare whatever interval types and associated me:Itric ers pd=s i
metrics are of interest, using the available event tmetr ics tm~e iesaps

types.end IntDisabled;
Performance assertions in PSpec are then pred- assert {& i :IntDisabled

icates over the set of events and intervals in a log. :i.time <= 50 cyc};
As an example of a performance specification,

suppose we would like to write an assertion about Fiue1Exmlprfmac eiiiton
the time during which interrupts are disabled on Fgue1Exmlprfmacsecicton
any processor in a multiprocessor. In particu-
lar, suppi se we would like to express the asser- unknowns bound to their estimated values, which
tion that "Interrupts are disabled for at most can then be input to the checker.
50 cycles." Figure I shows how we can do this The generation of monitoring logs can be ac-
in PSpec. First, we introduce events, IntOUf~ complished with whatever monitoring tools are
and Inton, corresponding to the disabling and available for the system whose performance is of
enabling of interrupts on a processor. Each of interest. The PSpec notion of a log is fairly gen-
these events has a timestamp and an attribute, eral. To make the PSpec tools work with a new
pid, recording the processor number. Using these log format, one need only implement the mod-
event types, we define an interval type corre- ule that presents this simple log abstraction and
sponding to an interval in a log during which in- which understands the log format.
terrupts are disabled. We declare an interval of The PSpec language design is currently in its
type IntDisabled to start with an event of type second iteration. I implemented both the checker
IntOff and to end with the next event in the log and solver for an earlier version of the language,
after the start event of type IntOn where the pro- and used the tools to write and check perfor-
cessor id of the end event matches the processor mance specifications for pieces of the language
id of the start event. Each IntDisabled interval run-tine system of Prelude, the new parallel pro-
is declared to have a metric, time, whose value graniming language being developed in the Large-
is obtained by subtracting the timestamp of its scale Parallel Software Group at MIT. The ex-
start event from the timestamp of its end event. periments with Prelude were interesting on two
Then we can express the desired assertion using counts. They led to ideas for the redesign of
this interval type. The assertion, shown in the the PSpec language, to make it more general
figure, can be read as: "for all intervals i of type and more useful. Also, several performance bugs
IntDisabled in the log, the value of the time in the Prelude run-time were found by checking
metric for i is at most 50 cycles." some simple performance assertions concerning

Performance specifications and monitoring logs the amount of time that interrupts are disabled
are input to two tools. The first, a checker pro- and the amount of time required to send mes-
gram, takes a performance specification and a sages between processors; the Prelude implemen-
monitoring log from a program run, and reports tors were unaware of these bugs prior to the ex-
which assertions failed to hold for the run. The periments.
second, a solver program, takes a specification
with symbolic constants whose values are un- References
known and a monitoring log from a program run,
and estimates values for the unknowns using lin- [11 Sharon E. PerI. Performance Assgeriion
ear regression based on the data in the log. The Checking. Ph.D. thesis, Massachusetts Insti-
output of the solver is the specification with the tute of Technology, expected September 1992.

35-..2



PROJECT

NUMESH

NuMesh CFSM Rev2

John S. Pezaris'

MIT Room NE43-616
pztmit .edu

The NuMesh is a novel approach for constructing The two-port register file (one read, one write) con-
scalable heterogeneous multiprocessor systems via a tains the program counter (PC) and instruction register
standardized interface as embodied in the Commu- (IR) to provide easy access to the control path from the

nications Finite State Machine (CFSM). A topology, data stream and vice versa. All registers may be read
with large-scale implementation strategy and mechan- onto the crossbar or read from it; register RO drives
ical packaging, has been chosen for the NuMesh that is the output port. Each register, save the PC and IR,
isomorphic to the crystal structure of diamond. This are decrementable counters with all-zeros detection.
paper presents a proposed architecture for the newest These last two features allow increased code density

revision of the CFSM which includes support for single- by directly implementing looping constructs.
cycle static routing and low-latency dynamic routing. The I/o ports are bidirectional, save for the Con-

A three-dimensional four-neighbor topology is con- trol Inputs and Outputs. Because there is only one
structible from rectangular printed circuit boards on transmitter-receiver pair on each line, pad and con-
which four connectors have been placed, one at each nector design is tightly constrained and can be highly
edge with opposite-edge connectors facing in the same optimized. Special circuitry is included to insure that
direction, one pair facing up, the other facing down. two neighbors never simultaneously drive their com-
When stacked appropriately, these modules form a mon 1/0 lines.
three-dimensional tetrahedral mesh with interesting By placing part of the control path in the data
logical and physical characteristics. Logically, the lat- path, a strong limitation of previous revisions is over-
tice is isotropic and homogeneous; physically, it con- come, namely the inability to have the data stream af-
tains horizontal channels running the extent of the fect the control stream. Specifically, it is now possibile
mesh and a complex air path from upper to the lower to embed control information within the data stream.
faces. This topology is, as far as we know, unique to This could be used, for example, to send a section
computer science, and minimal in the number of ports. of code as routing information within the header of a

The CFSM Rev2 architecture centers around a five- message, or, in other terms, to send the complete pair
port 32-bit crossbar controlled by five synchronous but of a Turing machine and its input as a message.
loosely coupled programmable finite state machines Many communication modes can be efficiently sup-
(FSMs). Each of the FSMs is associated with an i/O port: ported on the Rev2 architecture. Although the stan-
four are designed to support the inter-CFSM routing, dard NuMesh model relies heavily on static routing,
while the fifth is intended to interface to a local pro- careful consideration has been given in the design of
cessing element. Further, each has a small register file, CFSM Rev2 toward supporting low latency dynamic
wired-or General Outputs with which communications routing. Taken in increasing order of complexity: Fully
between FSMB is effected, and similar Control Outputs synchronous static routing takes 1 cycle per node; syn-
and Inputs over which negotiations between neighbor- chronous fanin (single reader, time-multiplexed writ-
ing nodes occur. The FSNm support three classes of ers) and fanout (single writer, multiple readers) takes
instructions: dispatch on condition (such as data pres- 1 cycle; asynchronous static-graph routing takes 2 or
ence, General Output, etc.), set registered value (such 3 cycles; limited-decision dynamic routing takes 2 cy-
as crossbar connection), and assert signal for n cycles cles per comparison with 2 cycles of overhead; fully-
(such as write enable to the output register, or load dynamic routing based on run-time conditions are un-
program RAM). predictable by nature and therefore no evaluations can

1 The -,dior is a member of Team NuMesh, a part of the MIT Computer Ardcitecure Group. This fesearch is supervised by Professor

Stephen A. Ward. Partial support has been provided by DARPA, Texas Insrumnents, and AT&T. Patents pending.

36-1



be made. 1. s. PEZARIS, CFSM rev 2: Progress to Date, NuMesh
The architectural design has been completed. Cir- Memo 9, Computer Architecture Group, MIT Lab

cuit schematics are anticipated by September 1992; for Computer Science, Cambridge, MA, May 1991.
Functional silicon within a year. j. S. PEzARIS, CFSM Desiderata, NuMesh Memo 12,

Computer Architecture Group, MIT Lab for Corn-
Bibliography puter Science, Cambridge, MA, July 1991.

F. HONORE, The Next CFSM: Revision 1 Description, Nu- G. A. PRATT, et al, The Diamond Interconnect, In Process.
Mesh Memo 14, Computer Architecture Group, Lab 1992.
for Computer Science, MIT, Cambridge, MA, Au- S. A. WARD, et al, The NuMesh: A Scalable, Modular 3D
gust 1991. Interconnect. In process, 1992.

K. MACKENZIE, NuMesh prototype hardware description, S. A. WARD, J. NGUYEN, J. S. PEZARIS, G. A. PRATT, 3D-
NuMesh Memo 1, Computer Architecture Group, 4NMeshes, NuMesh Memo 18, Computer Architec-
Lab for Computer Science, MIT, Cambridge, MA, ture Group, Lab for Computer Science, MIT, Cam-
June 1990. bridge, MA, September 1991.

(a) (c) CACrossbar Address

Crossbar

(b) A I/o - WE R3 Crossbar

C 1/0 Program 2
Memory Instruction

D 1/0o P
S= Program

Memory

LP 1/o0
WA RA

Figure 1: (a) Diamond lattice as implemented with printed circuit cards and vertical connectors; (b) Block
diagram of CFSM Rev2, illustrating the four routing ports A-D and the local processor port LP; (c) Schematic
diagram of a single FSM from a Rev2 CFSM, found within one of the P boxes from (b).

36-2



NUMERICAL STUDIES OF VORTEX DYNAMICS IN JOSEPHSON JUNCTION

ARRAYS*

JOEL R. PHILLIPSt

In the past decade there has been considerable We further define a vector of mesh currents I,,
interest in the physics of artificially fabricated which are related to the branch (junction) currents
Josephson junction arrays. In particular such by
arrays provide a useful model system for high- - lb

T, superconductors[6]. In this paper we describe Ib

the numerical study of vortex excitations in a
Josephson junction array. The next question is the computation of the

A Josephson junction may be fabricated by sand- magnetic flux 4). We separate this into two parts,
wiching a thin insulating layer between two super- the flux from an externally applied field 0,t and

conductors. The junction may support a supercur- the flux (kind induced by the currents in the array.

rent of The flux (bnd can be calculated given the current
distribution

1 = I1 sin 2eM4 ) ind'- "- MLIb = MLMrIm

where the gauge-invariant phase difference 0 con- n

tains a contribution from the quantum-mechanical where the matrix L is the standard partial-
phases of the superconducting islands, and from the inductance matrix[4]. We can interpret the matrix
magnetic field. An array of Josephson junctions L as a set of dependent "voltage" sources; every
consists of a regular lattice of islands of supercon- junction i contributes a voltage Lijli across junc-
ductor connected by Josephson junction. tion j. The matrix MLMT will generally be dense,

A vortex is an excitation in the phase (0) con- as the mesh current in every cell contributes to the
figuration of the array. The definition of a vortex flux through every other cell. This fact will present
is that, in the absence of magnetic fields, the sum the main computational difficulty in these calcula-
of the phase differences around any loop formed by tions.
the junctions of the array is 27r times the number of We can now write the full system of equations to
vortices contained by the loop. The magnetic field be solved
contributes a term S2e

2e Mo + MLMTIm + 4 euD - - 27rnbm,v = 0
4D)- h

to the loop-sum of the phases, where 4) is the MTI, - Icsin 0
flux through the loop. Thus, the system can be
considered as a sort of nonlinear circuit, with phase These nonlinear equations are solved using New-
analogous to voltage. Vortices and magnetic fields ton's method. The computation can be reduced to
act as voltage sources. solving a series of linear systems of the form

We can analyze this network using mesh
analysis[l]. We use the mesh matrix M to express M(D + L)MTZ = b
the "voltage law"

2e where L is the partial-inductance matrix previously
M0 = -46)- + 21rnb,,,,, discussed, and D is a diagonal matrix. This (dense)

linear system could be solved using direct Gaussian
where the Kronecker delta indicates the number n elimination, which, for an N x N array, would
of vortices in a cell, and 0 is now to be understood have memory requirements growing as N 4 and
as the vector of phase-differences, computation time growing as N 6 . The memory

requirements of forming MLMT make the study
"This work was supervised by Prof. 1. K. White and of arrays of more than moderate (N = 40 - 50)

Prof. T. P. Orlando. J. Phillips acknowledges support from size impractical on a typical scientific workstation
an NDSEG fellowship.

Dept. of Electrical Engineering and Computer Science, when a direct method is used to solve the equations.
Massachusetts Institute of Technology, Rm 36-886, Cam- The obvious alternative is a conjugate-residual type
bridge, MA 02139. E-mail: jphit/Orle-vlsi.mit.edu iterative method[2], which will not require storage

37-1



Once we have obtained vortex solutions to the
GORITHM FOR SOLVING AT -R b). network equations, physically relevant quantities,

such as the vortex energy as a function of position,
guess z° driving current, and external field, can be easily
gepess ( obtained. A typical single-vortex solution is shown
repeat { i iue2

..ompute the error, rk = b- AZk in Figure 2.

Find zk+l to minimize rk+1

k=k+ I
} until rk small

of the matrix, only the computation of matrix-
vector products.

The conjugate residual algorithm can be acceler-
ated by applying it to the transformed problem

PAx = Pb P "- A-'

If the preconditioning matrix P is close to A-', FIG. 2. Vortex in array with externally applied field.
the conjugate residual algorithm will converge in Self-field effects are observed in the screening currents flow-

few iterations. If in addition the cost of computing ing at the edges.

P is small, the resulting algorithm will be fast. To model dynamics of vortices, we must add

time-dependent terms to the Josephson current
"- relation

Sd 2k d4
14 = I, sin 0 +,3- o + r-d

dt2  dtI After time-discretization, the addition of these
terms will only modify the numerical values of the

3 :entries in the matrix D, so that the numerical issues
are essentially unchanged.

Future numerical work will focus on using a
fast multipole algorithm[3] to compute the matrix-

* 10 i 2 vector products in the conjugate-residual algo-
"Wn= rithm. This algorithm should allow simulations to

FIG. 1. Effect of preconditioner on conjuegate-residual be performed in time linear in the number of mesh
algorithm. Dashed line shows converence of preconditioned elements.
problem

To motivate the selection of an effective precon- REFERENCES
ditioner, consider the case of weak self-field effects,
where the elements of L are significantly smaller [i] C. A. DEsoER AND E. S. KUH, Basic Circuit Theory,

than those in D. It is found upon inspection that McGraw-Hill, 1969.

the system of equations [2] H. C. ELMAN, Iterative methods for large, sparse, non-
symmetric systems of linear equations, PhD thesis,

MDMTZ = b Yale University, 1982.
[3] L. GREENGARD AND V. ROKHLIN, A fast algorithm

is structurally identical to the five-point finite- for particle simvlations, Journal of Computational
difference discretization of Poisson's equation. Physics, 73 (1987), pp. 325-348.
Siffernce suchdasystemicatn beoveryeffPiciyso lved [4] A. E. RUEHLI, Inductance calculations in a complex in-
Since such a system can be very efficiently solved by tegrated circuit environment, IBM Journal of Re-
use of the fast Fourier transform[5], we suspect it search and Development, 16 (1972), pp. 470-481.
would make an effective preconditioner. For mod- [5] G. STRANG, Introduction to Applied Mathematics,

erate self-field effects (ind small), this precondi M Wellesley-Cambridge Press, 1986.
(6] M. TiNKHAM AND C. J. LoBa, Physical properties of

tioner speeds up the computation by roughly a fac- the new superconductors, Solid State Physics, 42

tor of five, as can be seen in Figure 1. (1989), pp. 91-134.

37-2



An Iterative Approach for the Solution of the Boltzmann Transport
Equation for Semiconductors

Khalid Rahmat
Research Laboratory of Electronics

Massachusetts Institute of Technology
rahmat@rle-vlsi.mit.edu

One of the major concerns in the design and fab-
rication of ultra-short-channel semiconductor devices
(with channel lengths as short as a few hundred
nanometers) is the effect of the high electric fields that
are generated in the device. The steeply graded elec-
tric field profile imparts very high energy to carriers
(electrons and holes) in a narrow region of the de-
vice. These energetic carriers can have a number of
deleterious effects on device performance and reliabil-
ity. These phenomena are usually addressed under
the rubric of hot carrier effects and are primarily a
reliability issue. For example, in a MOSFET which
undergoes hot carrier degradation, device parameters
such as threshold voltage, transconductance and cur-
rent can change substantially over the device lifetime.
Thus a circuit designed with certain nominal MOS-
FET parameters may fail if the device characteristics
change significantly as a result of device operation.
Hot carrier effects are also a major design constraint
on optimizing the design of short-channel devices as Figure 1: Steady state distribution from an arbitrary
the device performance can be traded-off for greater initial distribution.
immunity to hot carrier degradation.

Computer programs that simulate the behavior of
semiconductor devices have been successfully used to
design and optimize devices for a number of years. Solution of the BTE yields the distribution func-
Unfortunately almost all such programs are incapable tion, f, for the carriers (electrons and holes) in mo-
of correctly simulating the hot carrier effects outlined mentum (k) and real space (r) given a field, F and
above as they only solve for average quantities such as the knowledge of the scattering mechanisms to be in-
electron concentration and average velocity and en- cluded in the right hand side and denoted by the scat-
ergy but provide no details about the high energy car- tering operator, S. Then all physical quantities of
riers. This failure stems from the simplified physics interest, such as electron density, .- 'rrent, energy etc.
which is incorporated in these programs. can be determined from the distribution function. As

The underlying mathematical description for trans- the BTE in general is an integro-differential equation
pozt in semiconductors is the Boltzmann transport (the scattering operator involves integrals of f in k-
equation (BTE): space) in six-dimensions and time it is extremely dif-

ficult to solve. Thus, only an approximate solution is
Of qF Of + v Stf] obtained in device simulation programs. For detailed
at h ak Or = solutions the BTE has been solved using a Monte-

Carle method [1]. This approach is stochastic in na-
ture and is equivalent to calculating the detailed path
of tens of thousands of electrons over the simulation in-

Faculty Supervisor: Prof. Jacob White terval. The Monte-Carlo method can in principle yield

This work was supported by the Defense Advanced the detailed distribution function but is extremely ex-
Research Projects Agency contracts N00014-87-K-825 and pensive computationally. Moreover, rare events such
MDA972.88-K-O08, and grants from I.B.M. as high energy phenomena are very difficult to com-

38-1



pute due to the stochastic nature of the Monte-Carlo
method.

An alternative to the above approaches is the di-
rect solution of the BTE. One way of doing this is
to write the BTE as a purely integral equation [2]. 1.2

This form can be thought of as separating the car-
rier transport into two problems: scattering and free- I-
flight. The scattering operator involves an integral in
momentum space only, while the free-flight operator U.
updates the distribution function in real space after
integrating over a time step, 1/F. Due to the implicit
nature of the integral equation, it can only be solved 04 .
using an iterative approach, where the iterations cor-

respond to stepping in time. Thus, given an initial Q2 .

distribution functicn, first the scattering operator is
used to generate a new function, g, which incorporates 0 4 *A 0 2 .4 6 8
only the effects of the scattering: Vz(ein) ,10,

g'(k) = rFf(k)+f S(k', k)f-(k')dk'-f-(k) J S(k, k')dk' Figure 2: The initial and final distribution of Fig.1

(2) plotted as a function of v_ for a fixed vP.
This new function is then used as the right hand side
of Eqn. 1 which can then be integrated to give:

,6

f"+'(k) = 0 d77 e - rng'(k - 1F 1) (3) ,.41".

which results in a new distribution function corre- 1.2\

sponding to its evolution in time. For the steady state .1
case the iterations will converge and the (n-1)th and
nth iterations will coincid- To include variation in 08

real space the seco. -ion can be modified and
requires an integral in real space also. I s

For the homogeneous case (i.e. with no spatial vari- a,
ation) the above equations have been implemented
in a simple simulator. Only the two most impor- 12

tant types of scattering are currently included: acous-
tic phonon (elastic) and optical phonons (inelastic). - , .2 0 2 4 6 I
Starting from an arbitrary initial distribution with no vi(al) 107

applied fields the distribution function should reach
its equilibrium value after a few time steps as shown Figure 3: Effect of an applied field on the distribution.
in Fig. 1.

In this figure the distribution function is plotted
assuming cylinderical symmetry, thus f is considered a direct solution to the BTE. Further work will in-
to be a function of v, and vt,. The top half of the dude spatial variation and will require the solution of
figure shows the initial distribution function which was Poisson's equation consistently with the BTE. Also,
chosen to be a prism shape whereas the bottom half extensions to higher dimensions as well as more effi-
shows the distribution function after some time steps. cient representations for the distribution function such
Clearly the distribution is now much more isotropic as basis function expansions are being studied.
and has roughly a gaussian shape. This is more clearly
visible in Fig. 2 where the distribution function is References
plotted as a function of v, for a fixed v,. [1] C. Jacoboni and L. Reggiani, "The Monte-Carlo

The effect of an applied field is shown in Fig. 3 method for the solution of charge transport in semicon-
where we start from the the distribution obtained in ductors with applications to covalent materials", Rev.
Fig.1 and turn on a constant electric field in the z Mod. Phys, vol. 55, no. 3, p.645, 1983.
direction. The distribution function after a few time [2] H. D. Rees, "Computer simulation of semiconductor
steps is shifted along the direction of the applied field devices", J. Phys. C: Solid State Phys,,vol. 6, p. 262,
(ignoring the'sign of the electronic charge). 1973 .

Currently the program is being used as a test-bed
to ide.. ify the features that are critical in generating

38-2



Edge-Triggering vs. Level-Clocking

Keith H. Randall Marios C. Papaefthymiou

MIT Laboratory for Computer Science
Cambridge, MA 02139

Synchronous circuits that implement clocked storage elements using level-sensitive latches, instead of
the more conventional edge-triggered latches, are becoming increasingly popular. An edge-triggered latch
updates its state on the rising edge of its clock input and directly supports the abstraction of a storage element
that is synchronized by the tick of a clock. The operation of level-sensitive latches is somewhat different.
While the clock input of a level-sensitive latch is low, the latch maintains its value from the last time the clock
was high. While the clock input of the latch is high, however, the latch becomes transparent and allows data
to flow unimpeded from the input to the output. Level-clocked circuits have the potential to operate faster,
in theory, than edge-triggered circuits. In this paper, we develop a methodology for comparing edge-triggered
and level-clocked implementations of synchronous circuits, and we investigate under what circumstances and
to what extent we can achieve this theoretical improvement in practice. Our experiments indicate a tradeoff
between the speedups achieved by level-clocking and the degree of pipelining in a circuit. Specifically, edge-
triggering is just as good as level-clocking for circuits with either too few or too many pipeline stages. When
the degree of pipelining is between the two extremes, however, the benefits of level-clocking begin to emerge.
We give a heuristic to identify the circuits that are likely to improve by level-clocking. We observe, based
on our experiments, that circuits with more uniform delays tend to improve more by level-clocking. We also
observe that there is no apparent advantage to clocking level-clocked circuits with asymmetric phases.

Implementation ease has made edge-triggered circuits particularly popular among designers. Level-
clocked circuits ha 'e the potential to operate faster than edge-triggered circuits, however, because they
allow computations to extend beyond a single clock cycle. The potential of level-clocked circuits to operate
faster than edge-triggered circuits comes at the cost of increased complexity both at the design and at the
implementation level. The operation of level-clocked circuits is not as intuitive as that of edge-triggered
circuits, and it is more difficult to argue about their timing. Additional layout difficulties arise due to the
multiple clocks that must be distributed across the chip. It is virtually impossible to quantify these dif-
ficulties. Our work, however, aims at providing the circuit designer with information that allows him to
decide whether the switch to a level-clocked circuit is probably worth the additional effort, or whether more
conventional solutions work just as well.

Our methodology for comparing edge-triggered and level-clocked circuits consists of the following three
steps. First, we retime the edge-triggered circuit so that it achieves the minimum period possible. Subse-
quently, we convert the edge-triggered circuit into a level-clocked circuit by replacing each edge-triggered
latch by a pair of level-sensitive latches that are clocked on opposite phases of a two-phase, nonoverlapping
clock. We retine this level-clocked circuit in order to achieve the minimum period possible when the active
times of _'a two clocking waveforms are equal. Finally, we further retime the level-clocked circuit while
simultaneously tuning the active times of the two clocking waveforms, so that we achieve the minimum
period possible under any retiming and under any two-phase, nonoverlapping clock. We repeat these three
procedures for pipelined versions of the original circuit. Each pipelining of the original circuit is obtained
by multiplying the initial number of latches on its edges by an integer constant. We also apply our three
procedures on pipelined versions of the original circuit with more uniform delays. We vary the original gate
delays, that were assigned by the lib2 library in six, by raising them to the same power p < 1. As p
decreases, the gate delays approach 1, and the clock period depends on the propagation delay along more
paths in the circuit.

A sample of our experimental results for the circuit multiai. from the MCNC benchmark is illustrated
in Figure 1. The data points were obtained for the original gate delays, and for gate delays obtained by

This research was supervised by Prof. C. E. Leiserson and supported in part by the Defense Advanced Re-
search Projects Agency under Grant N00014-91-J-169S. Authors' e-mail addresses are rands.11@theory. cs.mit. *du.,
%&r.osethsory.,cs .it•, .du

39-1



3 0% ................... ......................... . .................................................

"0.:

0.
2%-theoretical maximum speedup

-6- speedup (p-1)
-- speedup (p-.6)

........... . .. .................. . .... . .................. ..

096
0 0.5 1 1.5 2 2.5

d /RMax rax

Figure 1: Relative speedup achieved by level-clocking over edge-triggering as a function of the ratio
d./R,... Data were obtained on the circuit multl6a from the MCNC benchmark.

raising the original gate delays to the powers p = 0.6 and p = 0.2. For each circuit, the figure shows the
relative speedup achieved by level-clocking over edge-triggering as a function of the ratio da/Rn.., where
d.ax is the maximum gate delay and R... is the maximum ratio of total gate delay and total number of
latches around the cycles in the circuit. Higher values of the ratio d./Rmu correspond to higher degrees
of pipelining of the original circuit. A relative speedup of 16% is achieved with the original gate delays and
pipelining of the original circuit by a factor of three. A 28.5% speedup is obtained for p = 0.2 and pipelining
by a factor of five. For all three delay configurations, the maximum speedup is obtained when the maximum
gate delay dm. is almost equal to the maximum delay-to-latches ratio R-.. in the circuit.

Our experiments indicate that edge-triggering is just as good as level-clocking for low degrees of pipelining
in the circuit. As we increase the degree of pipelining, however, the benefits of level-clocking begin to emerge.
When we increase the degree of pipelining after a certain point, then the advantages of level-clocking suddenly
disappear, and edge-triggering becomes again as good. Our experiments also indicate that the advantages
of level-clocking are more apparent in circuits with more uniform propagation delays. We give a heuristic
criterion that identifies whether a circuit is likely to improve with level-clocking, by examining the maximum
gate delay d... and the maximum delay-to-latches ratio R.. in the circuit. According to our criterion, the
closer d., is to Rm., the more likely it is for the circuit to improve by level-clocking. Our criterion agrees
with our experimental results. Moreover, the advantage of level-clocking disappears suddenly precisely when
dm. exceeds Rm.,. In our experiments, we observed no instance where simultaneous retiming and tuning
led to faster level-clocked circuits than retiming with symmetric clocks.

Our work should not be viewed only as a practical demonstration of the potential speedups that can be
achieved by level-clocking over edge-triggering. We have also presented a criterion, expressed in terms of the
characteristic parameters d.. and R,.. of a circuit, for identifying circuits that are likely to improve by
level-clocking. Moreover, our empirical results suggest a design style for generating circuits that are likely
to be faster when level-clocked. These circuits will be designed with standard cells of uniform delay, and
the delay-to-latches ratio around their cycles will be roughly equal to the longest gate delay. The original
design can be edge-triggered, a domain where design is more simple and intuitive. The final level-clocked
circuit will be generated automatically using the tools that have been developed for optimising level-clocked
circuits.

References

[1] M. C. Papaefthymiou and K. H. Randall "Edge-Triggering vs. Level-Clocking," unpublished manuscript,
April 1992.

39-2



WAVEFORM FREQUENCY-DEPENDENT OVERRELAXATION FOR

TRANSIENT TWO-DIMENSIONAL SIMULATION OF MOS DEVICES'

MARK REICHELTt

This abstract presents a new waveform frequency-dependent overrelaxation algorithm and
its application to solving the differential-algebraic system generated by spatial discretization
of the time-dependent semiconductor device equations.

Device transient simulation is usually performed by numerically solving the coupled
Poisson and time-dependent electron and hole current-continuity equations with a low-order
implicit time-integration scheme, combined with a Newton or relaxation method to solve
the generated sequence of nonlinear algebraic equations [1]. Another approach is to apply
WR and standard overrelaxation acceleration (WSOR) to the equation system, as given
in Algorithm 1 [4. 2, 3]. Though fast and parallelz:able, the ordinary WSOR algorithm
can unfortunately produce oscillatory results, even with a carefully chosen overrelaxation
parameter, as illustrated in Figure 1.

ALGORITHM 1 (ORDINARY WSOR).

guess u . n0 .p° waveforms at all nodes

for k=0.1.... until converged
for each node i

solve for k+1 waveforms

(like Gauss-Seidel WR):
.~ ý+I, k+lk
.n I P 4,u) = 0

dn ,+ , .nu!'+) +,f2,_(_u,,n_ n_) = 0
-- , uJ, j ) = 0-
11 k+i k1l - Ij•

Td Pi f3,(Ui` '.P'i-'P = 0 ___________

k-i k+I k+I time (sec)
overrelax t", n, .p waveforms

I- [ k+ vo]

FIG. I. The ordinary waveform SOR algorithm for device simulation and a plot of the electron
concentration us. time at a channel node of the karD example, showing the WSOR frequency amplification.

To derive a more reliable acceleration, the effect of each iteration of Gasiss-Seidel WR can
be represented abstractly as

(1) = F(xk) where F: C- C',

C' is the space of continuously differentiable functions, and zk(t) = [uk(t).nk(t),pk(t)]T.
Then if Ak(t) = zk+I(t) -_zk(t) is small, a linearization of equation (1) followed by Fourier
transformation yields

(2) Xk+i( I)- G(.) &G~)

where G(.;) is the Fourier transform of the linearized F. The WR algorithm can then be
accelerated in the frequency domain by overrelaxing:
(3) -

T This work was supervised by Prof. Jacob K. White and Prof. jonathan Allen and supported by DARPA
contract N00014-91-J-1698, NSF .ontract MIP-8858764 A02. and a grant from IBM.

t Research Laboratory of Electronics. Dept. of Electrical Engineering and Computer Science. Massachu-
setts Institute of Technology. Cambridge. MA 02139. E-mail: mwr'Orle-vlss.mst.edu

40-1



Inverse transformation yields the following time-domain overrelaxation expression:

(4) X'4 1 (t) _ Xk~l (t) + a(t - r) -[xk+1(r)-?(r)] dr

With this waveform frequency-dependent successive overrelaxation algorithm (WVFD-
SOR) [5], instead of multiplying the delta in the time domain by a constant parameter a as
in ordinary WSOR. the delta in the frequency domain is multiplied by a frequency-dependent
overrelaxation parameter a(w). The rationale for this approach is that different frequency
components of z converge at different rates. In practice, the frequency-dependent overrelax-
ation parameter a(.) is computed as follows:
Step I Perform enough initial Gauss-Seidel (GS) WR iterations so that the largest eigenvalue

-(•) of the GS WR operator dominates convergence at each frequency.
Step 2 Estimate the largest magnitude eigenvalue y(w) of the GS WR operator with the

[ _()]"Xk- I()
Rayleigh quotient: 1(a) = [A(w)]- AF(w

Step 3 Compute the overrelaxation parameter: a(.,;) 2 + l

Figure 2 shows the convergence of WR. WSOR and WFDSOR for a typical simulation
with 256 fixed timesteps and 64 initial WR iterations. Ordinary WSOR. with parameter
chosen for frequency 0 (DC). diverges, while the frequency-dependent overrelaxation algorithm
WFDSOR converges rapidly (10 orders of magnitude in 256 iterations).

lddD

St o, .to,
L.• 512 ps

1W1

to,1

to-.

iterations

FIG. 2. A4n example simulation set up and a plot of convergence (terminal current error vs. iteration) for
WR (dashed), ordinary WSOR (dotted), and frequency-dependent WFDSOR (solid). The horizontal dashed
lane represents an accuracy of 0.1 percent.

REFERENCES

(1] R. E. BANK, W. C. COUGHRAN, JR., W. FICHTNER. E. GROSSE, D. ROSE. AND R. SMrTH, Transient
simulation of silicon devices and circuits. IEEE Trans. CAD. 4 (1985), pp. 436-451.

(2] E. LELARASMEE, A. E. RUEHLI, AND A. L. SANGIOVANNI-VINCENTELLI. The waveform rela.ration method

for time domain anal ysis of large scale integrated circuits, IEEE Trans. CAD, 1 (1982). pp. 131-145.
(3] U.. MIEKKALA %N1 0. NEVANLINNA, Convergence of dynamic iteration methods for initial value problems,

SIAM I. Sri. Statist. Comput., 8 (1987). pp. 459-482.
(4] M. REICHELT. J. WHIrrE, AND J. ALLEN, Waveform relaxation for transient two-dimensional simulation

of MOS devires. in Proc. International Conference on Computer-Aided Design. Santa Clara, CA.
November 1989. pp. 412-415.

[5] - . Wai~eform frequency.dependent overrelaxataon for transient two-dimensional simulation of MOS

devices. in Proc. Workshop ,an Numerical Modeling of Processes and Devices for Integrated Circuits.
Seattle. WA. May 1992. pp. 161-166.

40-2



Design of a Multithreaded Processor Architecture

Madhumitra Sharma'

MIT Room NE43-237
e-mail: sharma abp.lcs.mit.edu

June 12, 1992

Multithreading has long been recognized as a solution to the latency problem in multiprocessor systems.
It allows processors to tolerate the long and unpredictable latencies of communication and synchronization
operations. With the widening gap between processor and memory speeds, long memory access latencies
are now being encountered even on uniprocessor systems. Therefore, today, multithreading appears to be
an attractive solution even for uniprocessor systems.

Several multithreaded machines have been built, the most prominent among them being the HEP, HORI-
ZON, and the MONSOON. An evaluation of these architectures reveals two principal shortcomings: First,
they perform at or near their rated performance only when a large number (at least 8) of concurrent
instruction streams are available. Second, the hardware cost of these architectures, in terms of silicon area
and bandwidth requirements, is very high. More recent projects such as the TAM project at Berkeley
[3] and the ALEWIFE [1] and *T [2] projects at MIT suggest that multithreading can be achieved on
(possibly slightly enhanced) stock processors. Thread-switching, scheduling, synchronization, and context
swapping can all be effectively accomplished in software. This class of machines (termed "multithreaded
stock processors") are attractive for two reasons: First, they use commodity processors, which keep better
pace with technology than specially designed processors. Second, multithreaded stock processors deliver
adequate per-formance on programs with low levels of parallelism. However, they do incur significant
thread-switching and context-switching overhead. Further, they inherit several limitations of conventional
single-thread processors. We believe that these factors will limit the performance of multithreading in the
long run.

We present a new microarchitecture that significantly reduces the overhead associated with multithreading
and, at the same time, can overcome performance limitations imposed on single-threaded processors by
the processor-memory interface.

First we present a scheme for caching contexts (Fig. 1) in a multi-window register file that essentially
eliminates context-switching costs. The register set is configured as a conventional cache with activation
frames direct-mapped onto register windows. Register names in instructions denote offsets in the frame.
The operand fetch unit of the processor maintains a scoreboard to keep track of the availability of frame
values in the register set and fetches unavailable ones implicitly on demand. Coupled with a split data/frame
cache, this mechanism masks context switching costs very effectively - at the expense of a somewhat longer
pipeline.

Next, we evaluate performance implications of the most basic choices in the design of multithreaded
processors with a simple queueing model. The choices are along two dimensions: (1) the processor pipeline
organization and (2) the definition of threads.

"*This research was supervised by Prof. Arvind and supported in part by DARPA under Grant N000014-89-J-1988

41-1



Figure 1: Context Switching Mechanism

* Processor Pipeline: Multithreading may be implemented on a single-threaded pipeline or on a
multithreaded pipeline. A single-threaded pipeline is defined as one where the processor pipeline
contains only one &ead at a time. A multithreaded pipeline, on the other hand, may contain more
than one threads at any time.

9 Thread Definition: Threads, in turn, can be defined dynamically or statically. Dynamically defined
threads suspend on dynamic events such as cache misses and synchronization failures. In the static
case, points of suspension are defined by the compiler. For example, the compiler may chose to
suspend threads on all references to data memory, on references to non-local data memory, on all
branches and other transfers of control, etc.

The model indicates that the paradigm of statically defined threads on multithreaded pipelines is the one
most amenable to high cache miss ratios, long pipelines and long memory access latencies.

References

[1] Anant Agarwal, Ben.Hong Lim, David Kranz, and John Kubiatowicz. April: A processor architecture
for multiprocessing. In Proc. 17th Annual Intl. Symp. on Computer Architecture, Seattle, Washington,
U.S.A., pages 104-114, May 28-31 1990.

[2] Arvind, G. A. Boughton, R. Greiner, R. S. Nikhil, G. Papadopoulos, and K. Traub. *T: General
Purpose Parallel Machines . In CSG Memo (Unreleased), 1991.

[3] David E. Culler, Anurag Sah, Klaus Erik Schauser, Thorsten von Eicken, and John Wawrzynek. Fine-
grain Parallelism with Minimal Hardware Support: A Compiler-Controlled Threaded Abstract Msa-
chine. In Proc. ASPLOS-Ol, 1991.

[4] Anoop Gupta, John Hennesey, Wolf-Dietrich.Weber, Hourosh Gharachorloo, and Todd Mowry. Com-
parative Evaluation of Latency Reducting and Tolerating Techniques. In Proceedings of the 18th Annual
International Symposium on Computer Architecture, 1991 at Toronto, Canada, pages 254-263, May
27-30 1991.

41-2



M.I.T.TRANSIT

PROJECT

Approximation of Performance Parameters
for Multistage, Multipath Networks

Patrick G. Sobalvarro
pgsvai.mit.edu

M.I.T. Artificial Intelligence Laboratory
Cambridge, Massachusetts 02139

June 14, 1992

This work [41 presents a quick means of approximating performance parameters of multistage, mul-
tipath networks for parallel computers. The networks modeled are dilated networks like the randomly-
wired multibutterflies described in [2]. The bandwidth and probability of successful message transmission
in such networks cannot be calculated by the methods of Patel [3] or Kruskal and Snir [1], because those
methods are specific to Banyan networks: they assume that the loads on channels entering a switch are
independent, whereas in multipath networks these loads are correlated.

Equations that yield the probability of loading on the output channels in terms of the input loading
probabilities and switching probabilities have been found and are described in [4]. Consider a switch
in a multipath network, shown in Figure 1. Because of the possible correlation of channel loads in a
multipath network, in order to calculate the probability of some output configuration {L = 11 of the
switch S, we calculate the joint probability mass function of the loads on the channels C11, .
subsets of which are independent given their input loads.

The resulting equations are solved recursively across the stages of the network to find the loading
probabilities on output channels of the final stage. The equations are of the form

P{Lc,, =lcý ..... Lc,. = c,,.} =

E P{Lc,, --c,,,.. Lc 1.=tc,. I LB 1  -B 1 ,, ..... LB,.. B1 ,.}

P{Lc,, = lc 2,,.... Lc,.=Ic,2 I LB21 = 1B2 i,.... LB.. = IB 2.. }

P{Lc,, = Ic, ..... Lc,. = 1C,.. I LB,1 = 'B.1 , ... ,LB,, = IB,,}.

P{LB11 = IB1 ,,,..., LB., = iB,,} (1)

For networks with oblivious routing and stochastic concentration, for an M x N, dilation K switch,
the conditional probibilities in Equation (1) are of the form

P{L =I1, ,LNk =N,k I Lc, cl...., LCA = IcM}"

( d N (.,l 1C. q d)q d2.. .qdN (2)

Here ql,q2. qNv are the switch's probabilities of switching in each direction, calculated from the
addressing probabilities. Also bi = I•'.~ 4,., and the sum is over the N-tuples d ,.... dN such that for

each d,, rnin (d, K) = bi, and _=. d. = 2M=I c,.

Acknowledgments: The research described in this abstract was conducted under the direction of Professor Thomas F
Knight. Jr. at the M.I.T. Artificial Intelligence Laboratory. The research was supported in part by the Defense Advanced
Research Projects Agency under contract N00014.87-K-0825. The author was supported in part by the Charles Stark
Draper Laboratory under a Draper Fellowship.

42-1



B2i C21

Figure 1: Channels referred to in Equation (1). The recursive step arises because in order to find the probability
of an output loading configuration of the switch S, we condition on the loads on its input channels C 1 _. .... C,.
No subset of C,1 . C..,. ,C need have mutually independent loads in a multipath network, but the loads on the
subset of channels from each switching element are independent given the message loads on the input channels
B 11 ,.. B.i.

Because of the summation in Equation (1), there are in the general case an exponential number of
these equations (although in the specific case of a Banyan network, these equations reduce to Patel's
equations). A program has been written to evaluate them and make simplifications based on indepen-
dence that can be determined from the network graph. The program can be used for small networks
and on special cases with limited path redundancy, but an approximation method is necessary for larger
examples.

A Monte Carlo approximation method can be used to estimate the desired probabilities, rather than
solve for them exactly. It can be shown that, if BI,..., Bm are the input channels and 01,..., O, the
output channels of some number k of final stages of the network, then if we generate tuples IB ...... lB,
randomly in accordance with the probability mass function P{LB, = 1B....,,, = lB..,,

h(lB,...... IB,) = P{Lo, = lo ..... Lo = lo I LB, 1= B,....LB,,= IB,,} (3)

is an unbiased estimator of P{Lo, = lo, ... Lo., = o,. }. The correlated random variates 1B ...... IB,

are easily generated by a method described in [4], and Equation 3 can be evaluated exactly if k is chosen
carefully. Where k = 1, the scheme always yields an estimate in polynomial time.

The resulting approximation scheme will always have lower variance than the obvious hit-or-miss
direct simulation technique, and so achieves a given error bound in fewer iterations. A program that
uses this estimation technique to calculate performance parameters for multipath networks has been
written, and on typical examples achieves given error bounds in about 1/9 the number of iterations
required under direct simulation.

References

[1] Kruskal, C. P., and Snir, Marc. "The Performance of Multistage Interconnection Networks for
Multiprocessors," in IEEE Transactions on Computers, Vol. C-32, No. 12, December 1983.

[2] Leighton, T., and Maggs, B. "Expanders Might be Practical: Fast Algorithms for Routing Around
Faults in Multibutterflies," in 30th Annual Symposium on Foundations of Computer Science, IEEE
Computer Society Press, November, 1989.

[3] Patel, J. H. "Performance of Processor-Memory Interconnections for Multiprocessors," in IEEE
Transactions on Computers, Vol. C-30, No. 10, October 1981.

[4] Sobalvarro, P. G. Probabilistic Analysis of Multistage Interconnection Network Performance. S.M.
Thesis, Massachusetts Institute of Technology Department of Electrical Engineering and Computer
Science. April, 1992.

42-2



Dribbling Registers: A Technique for Latency Tolerance in
Large-Scale Multiprocessors

Vijayaraghavan Soundararajan and Anant Agarwal"

NE43-633
ravivindaloo.lcs.mit.edu

1 Introduction and Description D-. fl a .• oa d a o amn t

As parallel machines grow in scale and complexity, latency I V2m pmomi 3 DLE

tolerance of synchronization faults and remote memory ac- t
cesses becomes increasingly important. One method of tol- AN" = -Zlls.

erating this latency is multithreading the processor and
rapidly context switching between multiple threads. Anal- F -- "- 12100" dabblo ioncy

yses show(2] that fast context switching between a few (3-
4) processor-resident threads is adequate when the laten-
cies being tolerated are short com pared to the total run F - Isp . 2 . p..3 row

lengths of all the resident threads. If this condition is not wommlr~ i mm2 l wmm.. IDLE 4r.
met (which is often the case for synchronization latencies), f
many more threads are needed. Because hardware costs m, .- ,Selml-s
limit the number of processor-resident threads, fast switch- call". so lw
ing between a large number of threads is difficult to achieve.

This paper proposes a mechanism for fast switching be-
tween a large number of threads. The basic idea is to im- Figure 1: Load Latencies for Dribbling and Multiple

plement a few (say, 3) threads in hardware, but attempt to Register Set Designs
provide a larger supply of threads to switch among by con-
tinually unloading stalled threads from the register file andloading runnable threads into it. Dribbling registers (D- to the register file occur through the three normal ports,loadng unnblethradsint it.Driblig rgisers(D- and the dribble port unloads stalled context information
registers) facilitate fast context switching and the ability to
hide the latency of loading and unloading context statel. and loads ready context information concurrently with the

normal data accesses.
D-registers, inspired by Sites' dribble-back registers for

multiple register window architectures[5], optimize utiliza- By continually polling the register file contents for stalled
tion of the processor under loads in which run lengths are contexts after a dribble finishes, D-registers reduce the effec-

short and wait times are long (relative to the run lengths). tive latency of a load as figure 1 illustrates, and attempt to

In this regime, register file designs often provide ineffi- keep the register file full of runnable threads. The dribbler

cient performance since loading is frequent and many cy- only unloads threads stalled due to synchronization faults,

cles are wasted in loading rather than used for execution. since cache miss latencies are short enough to be tolerated

D-registers alleviate time wasted on loading/unloading by by context switching.

amortizing these cycles with useful processor execution cy- Analytical models and simulation show that processor
des. utilization approaches unity for typical workload parame-

On-chip instruction caches decrease traffic to off-chip ters.

memory, providing long periods in which the cache/data
pathway goes unused (in RISC processors the number of
non-load/store instructions and hence the number of free 2 Analytical Model
memory bus cycles can approach 70%[4]). D-registers use
these free cycles to load context information concurrently We can model the processor utilization in a system that
with program execution. This is accomplished by adding 1 employs D-registers by using a simple queueing model. The
read/write port to the (typically three) ports already exis- register file is modeled as a queueing server in which register
tent in the multiple register set register file. Data accesses frames are added at some rate by the dribbler, and register

frames are consumed at some other rate by an execution
"This work was supervised by Professor Anant Agarwal process that causes synchronization faults. A register frame

The abstracted research was funded by DARPA contract isdedntthquuigerrtemo ntherbbef
#NO0014-87-K-0825. is added into the queueing server the moment the dribble of

A more thorough discussion is presented in (61 a frame completes. Similarly, a register frame is considered

43-1



to be consumed the moment a synchronization fault occurs. load/store operations, (5) the cache hit rate on load/store
The utilization of the processor is the fraction of the time operations, (6) the synchronization fault latency and cache
the register file is busy, and is simply the utilization of the miss latency, and (7) the lengths of the individual threads.
queueing server. Although real program traces are not run through the sim-

Let the service rate or consumption rate be U: I/U is ulators, the parameters specified above are taken from real

the average time between synchronization faults, i.e., the parallel applications[4].

average run length. Let the arrival rate be L, i.e., I/L is the
time between completions of dribble operations. In other
words, L is the probability that a dribble completes on a 4 Results
given cycle, and a process is added. The utilization, p, of
the queueing server is given by D-registers provide significantly higher utilization than the

L multiple register set design, nearly doubling it in some cases.
p = L. (1) Utilization increases under typical workload parameters and

= U a cache miss rate of 9% from 50% with multiple register sets

p has a maximum of I. That is, if the rate of synchronization to 90% with the addition of dribbling registers. D-registers
faults is less than the rate of dribbling, then in the steady provide slightly lower processor utilization (40% vs. 50%)
state, there will be no idle time. This formula only ap- than the Context Cache for very small runs between syn-
plies when L < U. For L > U p should approach 100% since chronization faults (about 30 cycles), because not a0l reg-
dribbles furnish runnable threads more frequently than syn- isters in the context are used, but with D-registers all are
chronization faults consume them. This formula assumes still loaded (thus resulting in wasted register loads): since
infinite register file size; in practice, a register file size of 3 this region is the intended operating region for the Context
or 4 resident contexts is sufficient to approximate this con- Cache, such performance is expected. As run lengths in-
dition. crease (approaching the average time between dribble com-

Validation against experimental data shows that the pletions, or about 60 cycles), D-registers outperform the

model agrees to within 10%. [6] presents a more exten- Context Cache (90% vs. 70%). In addition, experimen-

sive model including load/store instruction considerations, tal results show that processor utilization remains virtually

and shows a comparison of simulation and model. constant with increasing numbers of contexts, thus validat-
ing the model's assumption of infinite register file size.

3 Experimental Framework References

In order to evaluate the effectiveness of D-registers and to [1] Anant Agarwal, Beng-Hong Lim, David Kranz, and John Ku-
validate the model, three functional trace-driven simulators biatowicz. APRIL: A Proces.or Architecture for Multiprocess-

for each of three different register file models were written, ing. In Proceedings 17th Annual International Symposium on

These models include Computer Architecture, June 1990.
(2] Wolf-Dietrich Weber and Anoop Gupta. Exploring the Benefits

of Multiple Hardware Contexts in a Multiprocessor Architec-
1. Single Register Set: only one context is stored in the ture: Preliminary Results. In Proceedings 16th Annual Inter.

register file at any given time. Cache misses cause national Symposium on Computer Architecture, June 1989

idling until satisfaction of the request, and on each (31 Peter R. Nuth. Parallel Processor Architecture: A Thesis Pro-
synchronization fault the resident context is unloaded posal. MIT VLSI Memo, 1990.

and replac-,•d with a runnable thread. (4] Jaswinder Pal Singh, Wolf-Dietrich Weber and Anoop Gupta.
"SPLASH: Stanford Parallel Applications for Shared-Memory.

2. Multiple Register Set[l]: multiple hardware contexts To appear in SIGARCH, Computer Architecture News, Spring
enable support of many threads concurrently. Con- 1992

text switching is used to hide cache miss latencies and (5] Richard L. Sites. How to Use 1000 Registers. In Proceedings,
lit Caltech Conf. VLSI, California Institute of Technology.

synchronization fault latencies. If all resident contexts January 1979
are already stalled by (large-latency) synchronization [6] Vijayaraghavan Soundararajan. Dribble-Back Registers. A
faults, one of the stalled contexts is unloaded and a Technique for Latency Tolerance in Multiprocessors. Bachelor's
runnable thread is loaded, thesis, Dept. Elec. Eng. & Computer Sci., MIT, 1992. Super-vised by Anant Agarwal.

3. Context Cache(3]: The Context Cache treats the reg-
ister file as a fully-associative cache, so a context
load/unload involves loading only the registers re-
quired for the current instruction, rather than loading
each register of the context.

The workload parameters used to synthesize traces to
drive the simulators include (1) the number of runnable
threads, (2) the number of hardware contexts (or resident
registers in Context Cache), (3) the number of registers in
a context, (4) the frequency of synchronization faults and

43-2



Compiling TAM Code to the J-Machine

Ellen Spertus*
NE43-630

ellens(gai.mit.edu

Introduction can always complete without waiting for data

The Threaded Abstract Machine (TAM) mod- [2]. When a procedure is invoked, a frame

el was designed to allow efficient execution of is allocated for the storage of arguments, lo-
fe-grasdigned programson eachinenwt h ee ution fcal variables, entry counts, and a remote con-
fine-grained programs on machines with mai- tinuation vector (RCV). The RCV lists which
imal hardware support [1]. Fine-grained exe- threads are ready to run. A software queue
cution is desirable because it hides the latency is maintained of frames whose RCVs are non-
that occurs in large parallel computers. I de- empty.
veloped two different ways of compiling TAM When a frame is removed from the queue,
code to run on the J-Machine. In this abstract, its RCV becomes the local continuation vector
I use the straightforward translation scheme (LCV), and a specially-designated entry thread
as the basis for a comparison of the J-Machine is run, which loads frequently-used frame slotsto the CM-5, which also has a TAM imple- into registers. Threads are executed from the
mentation, and I compare the two translation LCV until it is empty, at which time the ezit
schemes for the 3-Machine, thread runs, storing register values into the ap-

propriate frame slots. When a thread com-
TAM putes a data value or control information on

When a program is compiled for TAM, each which another thread depends, it forks the
procedure is divided into a set of threads and thread. When a non-synchronizing thread is
inlets. Threads encode the body of the pro- forked, a pointer to the thread is placed in the
cedure, while inlets are message handlers. A LCV. When a synchronizing thread is forked,
thread can be either synchronizing or non- it is only placed in the LCV if decrementing
synchronizing. If it is synchronizing, it has an its entry count yields zero. A similar opera-
entry count which must reach zero before the tion, post, is used within inlets, which places
thread can run. Each thread is comprised of the target thread in the RCV.
instructions such that once a thread begins, it The only language that is currently com-

piled to TAM is Id. TAM supports I-struct-
"*This research was msperv;sed by Pro'. WIlliam ures rn-, M-structures.

J. Dally and was supported in part by the Defense
Advanced Research Projects Agency under contracts
N00014.iK-0738 and N00014-87K.0825, by a Na. Comparison to the CM-5
tional Science Foundation Presidential Young Inves-
tigator Award, prant MIP-"657631, with matching To judge how well the J-Machine sup-
funds from General Electric Corporation and IBM
Corporation, and by a National Science Foundation ports fine-grained parallelism, we compared
Graduate Fellowship. a straightforward implementation of TAM on

44-1



TAM Mechanism Straightforward Implementation Flattened Implementation
inlet priority 0 message handler priority 0 message handler
post from inlet placement of thread in RCV jump directly to thread
activation of frame message from background to entry thread n/a
entry thread background priority code, which jumps not used

to threads within procedure
threads background priority code priority 0 code
exit thread sequence of code run at background priority not used
fork from thread jump or push onto LCV jump or push onto CV
system routines priority 0 message handlers priority 1 message handletrs

Table 1: Mapping of TAM Constructs to the J-Machine

the J-Machine, to the CM-5 implementation. does not benefit from TAM's two-level hier-
It highlighted the following architectural dif- archy in which threads from the same proce-
ferences: dure are grouped together. A model that fiat-

tens this hierarchy was implemented, where,Network Interface On the J-Machine, instead of storiug a posted thread in a RCV,

messages can be of almost unlimited length the thread is executed immediately after the

and are sent directly from the processor. This inlet that posted it. By relying more heavily

proved superior to the CM-5, on which mes- on the pos hardwyre mes e q eand
sags ae lmitd t 5wors ad ae snton the MDP's hardware message queues and

sages are limited to 5 words and are sent dispatch mechanism and exposing the code
by system calls operating on memory-mapped to further optimisations, greater efficiency is
queues. Additionally, the CM-g needed to poll achieved, although the risk of queue overflow
to check for incoming messages, while the is increased. On a sample program (parans
Machine's Message-Driven Processor (MDP) with an argument of 10), the flattened imple-
has hardware dispatch. mentation required 77% the instructions of the

Tags To our surprise, the MDP's cfuture straightforward implementation.
tag provided little benefit in implementing I-
structures and M-structures. References

Conventional Architectural Features [1] Culler, D. E., A. Sah, K. E. Schauser,
Due to the J-Machine's longer cycle time, T. von Eicken, and J. Wawrsynek. "Fine-
shortage of registers, and lack of a cache, its grain Parallelism with Minimal Hard-
performance was inferior to the CM-5's. ware Support: A Compiler-Controlled

Threaded Abstract Machine," ASPLOS-
A Flattened Translation Strategy IV, 1991, pages 164 - 175.

While the J-Machine supports TAM well in [2] Schauser, K. E. Compiling Dataflow into
a straightforward way, the MDP's strengths Threads: Efficient Compiler-Controlled
and weaknesses make a different model more Multithreading for Lenient Parallel Lan-
efficient. Table 1 compares the two ways of guages. Master's Project, Department of
translating TAM code. Because the MDP does EECS, University of California, Berkeley,
not have a cache and is short on registers, it 1991.

44-2



Hindsight: Debugging Parallel Programs using Reordering

by Bradford T. Spiers*
Large-Scale Parallel Software Group, MIT LCS

e-mail: btspiers@lcs.mit.edu

1 Introduction
In this paper we present Hindsight, a debugger for parallel programs. Hindsight is designed to handle non-

deterministic errors common in MIMD programs. Hindsight assumes that a program execution is composed of
threads, which are in turn composed of a set of atomic code blocks. Threads communicate by exchanging messages.
Hindsight helps programmers fix errors caused by atomic code blocks that execute in a different order than the
programmer intended. It does not address races in parallel programs in which the execution of atomic code blocks
overlap erroneously. This approach addresses the harder of the two problems, as Miller and Netzer [NM88] point
out: detecting races is relatively easy (see Emrath and Padua [EP89] for an example), but correcting out-of-order
atomic code blocks is NP-hard.

2 Nondeterministic Errors
A nondeterministic error is caused by timing differences. These differences change the order in which atomic code

block execute. Such changes can produce unpredictable results, but the underlying problem is an incorrect order of
execution of atomic code blocks. The atomic code blocks can execute out of order because they are underconstrained.
To fix the program, the programmer must add constraints.

3 Related Work: Debuggers that Provide Just Replay
To handle nondeterministic programs, many debuggers for parallel systems record a log file. The log file contains

a history of the order in which an execution's synchronizing events take place. The debugger can use the log file to
rerun an execution in the same order as occurred in the logged execution. This reexecution is normally called replay
[Mel89]. During replay, a programmer can examine program state on any node using sequential debugger features.
Using this approach, a programmer is suppossed to be able to debug nondeterministic programs.

Unfortunately, a programmer who uses replay to debug parallel programs cannot verify if a fix is correct. To see
why that is true, consider a debugging scenario for a nondeterministic bug. The programmer uses replay to examine
the program and decides what the bug is and how to fix it. Next, he changes the source code to fix the bug and
recompiles the program. Finally, the programmer runs the new program, which obtains the correct result. Now we
are unsure of what has happened: did the change fix the error, or did it merely change relative timings enough to
hide the error for now? The programmer has no way of knowing which possibility actually occurred.

4 Hindsight
Hindsight allows the programmer to reorder concurrent atomic code blocks. It starts from the premise that the

programmer suspects that the program lacks constraints. The programmer then adds the constraints necessary to
obtain the desired ordering by specifying the order in which a set of concurrent, atomic code blocks will execute.1

The user may not add or subtract atomic code block executions because the source code is not modified. Hindsight
checks whether the reordering violates control dependencies. If none are violated, then the modified execution is
replayed. A design with similar goals was presented by Goldberg et al. [GGLS91].

Figure 1 shows a sample reordering using Hindsight. In one thread of the original execution, the atomic code
block executions {A, B, C} are underconstrained. The programmer suspects that this ordering could be causing the
problem, so he chooses to reorder atomic code blocks in that thread. He specifies a new ordering for that subset
of atomic code blocks, {C, A, B}. Hindsight then replays the portion of the computation that happened before
[Lam78] the reordering so that the system is in the same state just before the start of the reordering as in the original

"Supervised by both Professor William E. Weihl and Al Davis. E-mail: weihllcs.mit.edu, adavisnhplald.hpl.hp.com.
Supported by an National Defense Science and Engineering Graduate Fellowship. Supported in part by the NSF under grant
CCR-8716884, DARPA under contract N00014-89-J-1988, and by an equipment grant from DEC.

'Multiple sets may be reordered at the same time. We explain the one-set case here for simplicity.

45-1



Tý- i.IA B C c-ZITZ] .
is identical rodrn f'

Normal, uncontrolled
C I Ic A IB execution

Figure 1: A sample reordering using Hindsight. The user reorders atomic code block executions, {A,B,C}, to
{C,A,B}. Hindsight replays the modified ordering through the end of the reordering.

execution. Then Hindsight controls execution so that the rew ordering, {C, A, B}, occurs. Hindsight replays the
parts of other threads that execute concurrently with the reordering so that different results are not obtained due to
different orderings of concurrent threads, whereas we want to isolate the effects of the reordering. 2 Then, Hindsight
releases control of atomic code block executions because the state has hopefully changed due to the reordering; thus,
the original log is no longer valid. When the program finishes, the programmer has three choices. If the ordering
did not produce the correct results, then the programmer may use the original logs to try another reordering. If the
ordering produced the correct results, then the programmer can either change the source code to produce that new
ordering, called the target ordering, or use the logs recorded during replay of the reordered execution to fix another
nondeterministic error.

The specific contributions of this work include:

"* Allowing programmers to fix nondeterministic errors with certainty that the error has not been hidden by
changed timing.

"* Providing a platform on which to build a testing tool that can exercise different orderings. Such a tool was
called for by Taylor et al.[TLK92].

5 Conclusion
We are currently implementing Hindsight. A one-node version works on simple test cases; we expect to finish

testing a multi-node debugger by the end of this summer.
Hindsight simplifies testing for and debugging of nondeterministic errors due to unanticipated orderings of atomic

code blocks. Hindsight's ability to reorder thread executions differentiates it from traditional debuggers which
provide only replay. Replay is inadequate because the programmer cannot determine if code changes fix a bug or
if relative timing differences hide it. Thus, Hindsight provides a tool for testing and debugging nondeterministic
programs that is absent from current systems.

[EP89] Perry A. Emrath and David A. Padua. Automatic Detection of Nondeterminacy in Parallel Programs. Proceedings
of the ACM SIGPLAN/SIGOPS Workshop on Parallel and Distributed Debugging, ACM SIGPLAN Notices,
24(1):89-99, January 1989.

[GGLS91] Arthur P. Goldberg, Ajei Gopal, Andy Lowry, and Rob Strom. Restoring Consistent Global States of Distributed
Computations. In Proceedings of A CM/ONR Workshop on Parallel and Distributed Debugging 1991, pages 140-
149, 1991.

[Lam78] Leslie Lamport. Time, docks, and the ordering of events in a Distributed System. Communications of the A CM,
21(7):558-565, July 1978.

[Mel89I John M. Mellor-Crummey. Debugging and Analysis of Large-Scale Parallel Programs. PhD thesis, University of
Rochester, 1989.

[NM88] Robert Netzer and Barton Miller. What are Race Conditions? Some Issues and Formalizations. In Proceedings
of A CM/ONR Workshop on Parallel and Distributed Debugging 1991, pages 251-253, 1988.

[TLK92] Richard N. Taylor, David L. Levine, and Cheryl D. Kelly. Structural Testing of Concurrent Programs. IEEE
Transactions on Software Engineering, 18(3):206-215, March 1992.

2 However different orderings of concurrent threads is useful for testing.

45-2



Exploiting Algorithmic Locality in Water*

Bradford T. Spierst Donald Yeungt

Large-Scale Parallel Software, MIT LCS Alewife Research Group, MIT LCS

btspiersOIcs, mit.edu piano@Ics.mit.edu

June 12, 1992

1 The Water Application
Water is an N-body moleculer dynamics simulation (n) [n- ] - 0 (n' (1)

which appears in the SPLASH benchmark suite [1]. As- P 2J

suming quasi-statics, atomic-level interactions between In the original implementation, each processor is re-
water molecules situated in three-dimensional space are sponsible for n/p molecules, and for each molecule, in-
computed using Gear's sixth-order predictor-corrector teractions with every other molecule in the simulation

method [2]. Under the influence of these interactions, must be considered. There is a factor of 1/2 because

the Water application simulates the trajectories of the when the interaction for a pair of molecules is corn-

molecules using Newtonian equations of motion for a puted, a solution for both molecules is obtained. As the

user-specified number of time-steps.. order of complexity indicates, the total work done in

In the Water application, the force that a molecule the entire simulation grows as the square of the prob-

exerts on other molecules has a limited radius of influ- lem size.

ence, so only molecules that are situated within some In comparison, the equivalent expression for our
cutoff radius of one another are allowed to interact. An
algorithm that is oblivious to the relative locations of
molecules must consider all possible pairs of molecules
even if most of them are too far apart to influence (n) [(I)(pn ) (n)] (nl)

each other. However, an algorithm that is cognizant of - 1) + 13 P 0 2 (2)

such spatial information can consider only those pairs

of molecules that are close enough to interact and can Again, each processor is responsible for n/p
therefore significantly reduce the amount of ex,.r4.neous molecules. The difference in our implementation is that
computation. the simulation space is divided into p regions, one for

The original ipmlementation of Water appearing in each processor, and each processor is responsible for all
the SPLASH benchmark does not exploit the algorith- the molecules which are situated in its region. Proces-
mic locality inherent in the Water application. Our sors no longer have to consider interactions between all
study provides an implementation of Water that takes possible pairs of molecules; instead, only the interac-
advantage of algorithmic locality. We evaluate the per- tions between molecules residing in regions which are
formance gains of our implementation over the original close together in space need to be computed. These in-
implementation and identify some important issues. teractions can be divided into two components. The

2 Analysis first represents the interactions between all possible

The following expression represents the amount of pairs of molecules residing in the same region. This
term is similar to the expression for the original ima-

work that each processor must perform in the original plementation and contains a factor of 1/2 for the same

implementation of the Water application. In all expres- reas o n a nd co mponent2represe
sion, ndentesthe umbr o moeculs ad pdentes reason given above. The second component represents

sions, n denotes the number of molecules and p denotes the interactions with all the molecules in near-neighbor
the number of processors, regions. In our implementation, the number of near-

*This work was supervised by Anant Agarwal neighbor regions for a given region is thirteen. The
tSupported by an National Defense Science and Engineering order of complexity indicates that the total amount of

Graduate Fellowship. Supported in part by the NSF under grant
CCR-816864, DARPA under contract N00014.69.J-196S. and by work done in the entire simulation grows as the square
an equipment grant from DEC. of the problem size divided by p. Therefore, we expect

ISupported in part by NSF grant # MIP."012773, in part by
DARPA contract # N00014-8"7-K-0625, and iL part by an NSF our implementation to be faster by a factor of p over
Presidential Young Investigator Award the original implementation.

46-1



S!-.distributed in a perfectly uniform manner.
52 .. ......... We expect that the problem of load-imbalance will
48

be much less severe when the problem size is increased
3 .. sufficiently. The load-imbalance that we observe in our

2 .- simulations is due to statistical fluctuations in the num-
20 ber of molecules assigned to each processor. Because
612! •water has a constant density, this statistical effect will

4• become less significant when the problem size increases.
0 w 616 624 632 640 641 ON 684

TiMe(x 100=000) 4 Conclusion and Future Work

odl-e Minted MlanesE In our study, we have demonstrated that an imple-
CMdman MCorec POWN mentation of the Water application that exploits algo-
Enlftf MondrM rithmic locality affords good performance gain over one

that does not. Theoretical analysis predicts a speedup
Figure 1: The original Water application with good of p over the original implementation. Actual simu-

lations show performance gains as well though they
so are far less substantial due to load-imbalance. Load-
52 •imbalance will always be a problem for executions with
4 small to medium problem sizes; however, the effect of
3 ... load-imbalance will be less detrimental to performance

,,---- when the problem size is sufficiently large. One area
20.....---. for future work will be to identify the point at which

12S load-imbalance becomes negligible.
s Although the primary benefit from exploiting al-
0 M6 70 7 M 712 10 7Ws 724 , gorithmic locality comes from minimizing extraneous

uw (a 00000) computation, there is also another benefit, namely lo-

Owe w Mi ned cality of data reference. Assuming an architecture that
Mdmad i _•n CoMrec MPoos can exploit data locality (such as NUMA architectures),
opt onr *hnW the assignment of molecules to processors based on their

spatial locations can greatly reduce the amount of inter-
Figure 2: Our modified version of the Water application processor communication. This, however, comes at the
with poor load-balance. expense of good load-balance, as is discussed above.

In fact, for the Water application, locality and load-

3 Experimental Results balance are conflicting goals. One can be improved at
We conducted our experiments on Proteus, a simula- the expense of the other, but both cannot be achieved

tor written by Brewer and Dellarocas [4]. We configured simultaneously. In future work, we plan to investigate
Proteus to simulate an 8x8 mesh with end-around con- this tradeoff and try to understand how each affects the
nections, no caches, and an analytically modeled net- performance of the Water application.
work. Proteus assumes that each node is a RISC pro-
cessor which executes every instruction in one cycle. [1] Jaswinder Pal Singh, Wolf-Dietrich Weber, and Anoop

Although our analysis predicts a speedup of p, this Gupta. SPLASH: Stanford Parallel Applications for
outcome is not reflected in our simulation results. As SAredJMemove, SIGARCH Computer Architecture News,Spring 1992.
Figure 1 and Figure 2 illustrate, our modified version of [21 c. w. Gew. Nsmccal In•tial VI, e Problems in

Water achieves a speedup of only 1.5. The theoretical Ordiaar, Differential Equations, Prentice-Hall, New

speedup is not obtained because of load-imbalance: the Jearsy, 1971.

original application, shown in Figure 1, displays almost (31 Eric A. Brewer and Chrysantho. N. Dellarocas. User
Documentatioa, Version 0.2, October 31, 1991.

perfect load-balance, while our modified version, shown [41 Eric A. Brewer, Chrysantho. N. Dellarocas, Adrian

in Figure 2, shows large load-imbalance. This difference Colbrook, and William E. Weihl. Profes: A

is clear when looking at the largest contributors to 4n Hi/L-PeC/Tw.aee Parallel-Amrbkiectsre Simualtor

iteration time, the procedures poleag and interf. Our Mrr/LCS/TR.516, September 1991.

analytical analysis assumes that we can divide the work
evenly, but that is possible only if the molecules are

46-2



Evaluating Game Trees in Parallel

Clifford Stein'
Laboratory for Computer Science

Massachusetts Institute of Technology
cliff Otheory. 1cs.mit. edu

The evaluation of game trees is a central problem in Artificial Intelligence. A typical game
tree (also called a MIN/MAX tree) is rather large, so fast algorithms are essential if we are to make
progress in computer aided game playing. Any algorithm that can hope to play in -real-time"
must use some pruning techniques to avoid searching the whole tree. Many researchers have
proposed pruning strategies for this problem and a number of good sequential search algorithms
have been developed, most notably the a-3 algorithm. In spite of the fact that parallel computers
offer a promising approach for speeding up game tree search, less is understood about the
complexity of parallel algorithms for this problem. We will show that part of the difficulty in
parallelizing a-3 search arises from an inherent lack of locality. We will then give an algorithm
that employs scaling to partially overcome this difficulty. We will show that the number of
bits needed to represent the range of leaf values is a measure of how hard the problem is to
parallelize.

We will focus on the case whep wish to exploit small amounts of parallelism. By small we
mean that if the tree has height h, we will use 0(h) processors. As a starting point, we consider
the problem of evaluating AND/OR trees. We will describe an algorithm by Karp and Zhang [1]
for evaluating AND/OR trees that, on a tree of height h, gets Q(h) speedup using h processors.
The key idea for this algorithm is that if an AND-node has its first input evaluate to 0, all the
other inputs to that AND-node can be ignored. Further, this is the only type of pruning that
can occur. Thus all pruning is based on local information, namely the value of a node's siblings.

Karp and Zhang originally believed that this algorithm could be extended to work for general
game-tree search. We will show that there are substantial obstacles to overcome in extending
this approach to MIN/MAXtrees.

a

Is b

10

Figure 1: A (shallow) cutoff in a-,3 search. Squares are MAX-nodes and circles are MIN-nodes.

In a-3 search, the pruning is not necessarily local. We illustrate the idea with the example
in Figure 1. MAx-node a has a child of value 15, hence it's value must be at least 15. The
only way that the value of MIN-node b can affect the value of a is if it is more than 15. But b
has a child that is 10 and hence can have a value of 'no more than 10. Thus the value of the
subtree rooted at c has no effect on the value of a and does not need to be evaluated. In fact,

'Support provided by NSF PYI Award CCR-89-96272 with matching support from UPS and Sun, by an AT&T
Bell Laboratories Graduate Fellowship, and by DARPA Contract N00014-89-J-1988.

47-i



a

is

20 C

2 d

5

Figure 2: A (deep) cutoff in a-03 search. Squares are MAX-nodes and circles are MIN-nodes.

the node being cut off does not need to be so close to the nodes that cause it to be cutoff, as
the example in Figure 2 shows. Here, the value of the subtree at e does not affect the value of
a. This creates difficulties for parallel algorithms because work done by one processor may turn
out to be unnecessary due to some pruning that occurs far away in the tree and much later in
time.

We will give a new algorithm for the problem of evaluating a MIN/MAX tree in parallel based
on the idea of scaling. We will reduce the problem of evaluating a MIN/MAX tree to the problem
of evaluating a series of AND/OR trees.

Our algorithm provably achieves O(h/ly) speedup using h processors , where -Y is the number
of bits needed to represent the range of possible leaf values. While this is not quite optimal
speedup, we have implemented a simulation of this algorithm and run it on a number of randomly
generated trees. The interesting thing to note is that when the number of bits is small, we get
close to optimal speedup, and that when the number of bits is large, the speedup seems to be
somewhat better than (h/-)), particularly for larger h. In other words, the incremental cost
of adding the 25th bit is less than that of ading the 4th bit. This is because the predicted
sequential running time of a subproblem is much less that the predicted sequential running time
of the original problem. When we execute many iterations, this serves to increase the effective
speedup.

This approach gives one solution to the problem that the information needed to prune may
arrive after a node has been evaluated. Since we do not now how to disseminate enough exact
information about node values, in our algorithm we disseminate approximate information about
the node values. In other words, when a node is evaluated in an iteration, it does have some
information about all the left siblings of its ancestors. By the final iteration it has all the
information that sequential a-0 would have. So by focusing on obtaining inexact information
about many nodes as opposed to exact information about fewer nodes, we are able to get better
provable bounds on the algorithm's performance.

References

[1] R. Karp and Y. Zhang. On parallel evaluation of game trees. In Proceedings of the 1989
ACM Symposium on Parallel Algorithms and Architectures, pages 409-420, 1989.

47-2



A Parallelizing Compiler Based on Partial Evaluation

Rajeev Surati Andrew Berlin
raj~martigny. ai. mit. edu aab@martigny.ai. m it. edu

NE43-439 NE43-434

MIT Al Laboratory

545 Technology Square
Cambridge MA, 02139

We have constructed a compiler that uses partial evaluation to achieve outstandingly efficient parallel
object code from very high-level data independent source programs. On several important scientific
applications, our compiler attains parallel execution and overall performance equivalent to or better than
the best observed results from the manual restructuring of code. Although partial evaluation has been
used successfully to compile efficient sequential code for uniprocessor machines, this effort represents one
of the first attempts to capitalize on partial evaluation's ability to expose low-level parallelism. New static
schedufing techniques are used to utilize the fine-grained parallelism on a multiprocessor machine. The
compiler accepts ordinary Scheme programs as source, and generates code for the Supercomputer Toolkit,
a parallel computer with 3 VLIW processing nodes, by mapping the computation graph resulting from
partial evaluation onto the Toolkit's architecture.

The compiler has been evaluated on two different highly abstracted programs written in Scheme
which simulate n-body problems which are important in the fields of celestial mechanics and particle
physics. The results reveal that it is possible to automatically achieve a factor of 6.2 speedup on an eight-
processor configuration of the Supercomputer Toolkit over a highly optimized uni-processor version of the
prograin. (The uni-processor version is executing a floating point operation in over 99% of the cycles.)
The compiler's speedup is impressive because the target architecture (the Supercomputer Toolkit) has
extremely low bandwidth, essentially allowing each processor to send a value once every 8 cycles on
average, with a latency of 6 cycles. Our results also reveal that although the static scheduling techniques
work well for computers the size of the Supercomputer Toolkit, they do not scale well to larger machines.

By reconctructing the data dependencies of the computation expressed by a program, partial evaluation
succeeds in "exposing the low level parallelism in a computation by ceiminating inherently sequential data-
structure references." [(1 Furthermore, elimination of data-independent branches produces huge basic
blocks of easily parallelizable straight-line code. Huge basic blocks make it feasible to use fine-grained
parallefism to spread the execution of a basic block across multiple processors, rather than assigning each
basic block to an individual processor.

Currently work is being pursued in three areas. One area is the modification of the static scheduling
technique so that it will scale well to computers with more processors. The second area is extending
the compiler to handle data-dependent branches. The last area is the pursuit of optimizations possible
only because the fine grain computation graph is available at compile time. An example of this would be

"*This work is supervised by Prof. Hal Abelson and Prof. (erry Sussman and supported in part by the Advanced Re-parch
Projects Agency of the Department of Defense under Office of Naval Research contract N00014-89-J-3202 and by the Natmonal
Science Foundation under grant number MIP-9001651.

48-1



to deduce that it is faster to compute a value on the processors which require the value rather than to
compute the value on one processor and then send the value to the rest of the processors.

Figure 1: Parallelism profile of Stormer integration.

"SPEDUP VS PROC SSORS

I, /

UI / U , U U U " I 5

Figure 2: Speedup graph of Storiner integration.

References

[1) A, Berlin, "Partial Evaluation Applied to Numerical Computation", in proceedings of the 1990 ACM 'Confer-
ence on Lisp and Functional Programming. Also see "A Compilation strategy for numerical program|s based
on partial evaluation," MIT Artificial Intelligence Laboratory Technical Report Tit- 1144, July, 19.9

[2] R. Surati, "A Parallelizing Compiler Based on Partial Evaluation" S.B. Thesis, MIT, 1992.

48-2



02SA Arrays for Fast Sparse Matrix Decomposition

Ricardo Telichevesky 1

MIT Rm 36-897
ricardocrle-vlsi.mit.edu

There has been great interest in exploiting the speed of parallel and pipelined machines in order
to accelerate sparse matrix factorization. This task is difficult due to the irregular structure
of most sparse matrices, which demands a complex sequence of instructions and data access
in order to properly match the source and target row elements during a row update. In the
following, we discuss the O2SA technique, which combines scheduling and storage allocation
techniques to enhance multiprocessor efficiency.

The Scatter-Gather approach, used in the YSMP code [1], proposes a solution to the
matching problem by scattering the elements of a target row into a vector of size n. Computers
with pipelined indirect addressing could then perform the source-target match in constant time.
After all the updates to a given target row are finished, its elements can be gathered back in
a dense vector. Figure 1, which depicts the processor utilization for the factorization of a
test matrix, suggests that the Scatter-Gather method exhibits poor performance on a parallel
machine.

The OSA representation of a sparse matrix (2] is an effective solution to the source-target
element matching problem during update operations. The row sparsity is exploited to share
the memory efficiently, by overlapping the scattered rows into a single linear array. The rows
are shifted by some offset in such a way that the nonzero elements of one row would fill-up the
nonused elements of another. During the update, elements aii of the source row are accessed
sequentially, and the corresponding column indices j are simply added to the target row k
offset to compute the address of the matching target element aki. This technique allows more
concurrency, as shown in Figure 1.

S--..- --- - . .......

0.8

0.7

$.4 Sm-Gdm'"uk.t

01 1 3 5

Figure 1: Processor Utilization for Test Matrix(Dram)

'Faculty supervisors: Prof. Jacob White and Prof. William Dally. This work was supported in part by the
CNPq-Brazil under contract 205541-88.7.

49-1



We are also interested in exploiting the locality of reference for high execution speed in
each individual processor. In order to achive this objective, we must restrict the number of
active target rows per processor, keeping them in a small, very fast cache. Figure 1 shows the
processor utilization for different cache sizes, n (or Scatter-Gather), 2n, 4n and so on. OSA
corresponds to the limit case, where the entire OSA-form matrix fits in the cache.

Instead of restricting the active set to R target rows, we envision the cache space as a
dynamic OSA structure, which evolves with the execution of the sparse matrix decomposition.
In the beginning of the factorization, hundreds of small rows are scattered and overlapped,
fitting in a small cache of size n, allowing a large degree of freedom to the scheduling mechanism,
which in turn allows a high degree of parallelism. A small cache, on the other hand, allows
a very high execution speed in each processing element. After all the updates to a target
row are finished, its elements are gathered back in a dense vector and possibly other targets
can be scattered in the cache. The factorization proceeds in this fashion, dynamically trading
available cache space for concurrency. We call this technique Overlapped-overlapped Scatter
Array (O2 SA). The solid line in Figure 1 depicts the estimated processor utilization for the
0 2SA technique. It achieves almost the same degree of parallelism as the OSA case, but using
a very small cache, comparable to the size required by the Scatter-Gather technique.

1 2 3 4 5 6 7 Row Offset
I X X 1 9
2 X X X 2 .
3 X X X 3 2
4 X X 4 .
5 X X X 5 -1
6 XXX 6 .
7 XX 7 .
8XXX XXXX 8 0

when 1 1 2 1 3 1 4 1 5 1 6 7 1 8 9
initial a52 0 a31 a5s a33 as7 0 a337

after N5 * * a31 0 a33 I * a37

after N3 a51 a 053 * as5 Ias as7 ass 0

Figure 2: 0 2SA Representation of a Matrix

Figure 2 shows the 0 2SA evolution for of a small test matrix. The algorithm starts with
rows 3 and 5 scattered in the array, and row 8 is only scattered after their processing is finished.
This example illustrates the adaptive utilization of the cache space, depending on the structure
of the rows and the scheduling heuristic.

References

[11 S. C. Eisenstat, M. C. Gursky, M. H. Schultz and A. H. Sherman, Yale Sparse Matrix
Package H. The Nonsymmetric Codes, Yale University Computer Science Department
Research Report 114, 1977.

[2] P. Sadayappan and V. Visvanathan, "Parallelization and Performance Evaluation of Circuit
Simulation on a Shared Memory Multiprocessor", IEEE Trans. Comp, Vol. 37, No. 12, Dec.
1988

49-2



A Sparc-based Processing Element for the NuMesh

Russell Tessier 1
MIT Computer Architecture Group

NE43-616
tessiercdlcs.mit.edu

Project NuMesh is an experimental, highly scalable interconnect designed to replace the
backplane bus as a major hub of digital communication [3]. A NuMesh system consists of a grid
of interconnected modules, each possessing a network interface and a processing element [2].
Computational flexibility is achieved by maintaining a standard network interface throughout
the system while varying processing elements as computing needs change.

A NuMesh processing element based on the Sparc architecture, the NuSparc Element. has
been designed and implemented. This element addresses a need for greater general-purpose
computational support in NuMesh systems and provides a mechanism for straightfoward access
to large quantities of low-cost, volatile storage. A parallel configuration of these processing
elements will be used to judge the NuMesh as a digital interconnect.

The NuSparc Element logically consists of four distinct subsystems: a processing unit, a
data storage unit, a status unit, and a network interface unit. These units communicate with
each other through an industry-standard, sixty-four bit channel referred to as Mbus. Due to
space constraints a non-coherent version of the Mbus protocol is used.

A Sparc CPU consisting of an integer unit, a floating point unit, a cache/memory controller,
and 64 kbytes of cache memory serves as the NuSparc processing unit. CPU chip dies are
enclosed in a 256-pin multi-die package manufactured by Ross Technology [11. The CPU operates
at clock speeds up to forty MHz.

The data storage unit consists of a DRAM controller and either eight or thirty-two Mbytes
of DRAM. Block data transfers of thirty-two bytes may be made between DRAM and cache
storage. The DRAM data path is enhanced with parity signals to provide for error detection.

NuMesh network status may be obtained from the status unit. Status signals indicate the
availabilty of network data and bandwidth. The network interface unit may be used by the
NuSparc Element to transact data with a NuMesh network interface. Data exchanged with the
network interface is held by first-in, first-out (FIFO) storage.

The NuSparc Element may operate asynchronously with respect to other processing elements
in a NuMesh system. Communication between these elements must be coordinated in software.
Software implementations based on common computational models such as shared memory and
message passing are planned for the near future.

An operational NuSparc Element is under analysis at the MIT Laboratory for Computer
Science. A comprehensive NuSparc software environment is currently being developed. Future
plans call for the consolidation of several NuSparc Element units into a single VLSI package.

1This research is supervised by Professor Stephen A. Ward. Partial support has been provided by Amp
Incorporated, AT&T, Cypress Semiconductor, LSI Logic Corporation, and Sun Microsystems.

50-1



64-bit data path with parity

Contrallo

64-bit Mbus

Network Network
Data Status

To NuXI h
Network

Figure 1: Block Diagram of the NuSparc Element

References

[1] Cypress Semiconductor, CYM6111 Multi-die Package CPU Data Sheet, Cypress
Semiconductor, January 1992.

(2] Stephen Ward, "The NuMesh: A Scalable, Modular, 3D Interconnect." MIT
Laboratory for Computer Science's Computer Architecture Group, internal doc-
ument, February 15, 1989.

[3] Stephen Ward, "Toward LegoFlops, Recognizing Space in The Digital Abstrac-
tion." MIT Laboratory for Computer Science's Computer Architecture Group,
internal document, January 24, 1991.

50-2



Competitive Fault-Tolerance in Area-Universal Networks

SivAN TOLEDO*
sivan@theory. ics .mit. edu

Laboratory for Computer Science
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

A universal network is a network that can simulate any J :121 1fil
other network which uses the same resources with only a
small slowdown. In this context, a fault-tolerant universal

network is a network that can simulate any other network
which uses the same resources, even after both networks
have undergone the same amount of damage. We study
universal networks in which the measure of resources is
the layota area required for the network.

The Fat-Tree network introduced by Leiserson can be N R

tailored to be area-universal. This means that a Fat-Tree
laid out in a square of area A can simulate any other net- Figure 1: We require that the universal network N be ableworklai ou inthe ameare wih O~og ) sowdwn, to continue to simulate the network R even after both have
work laid out in the same area with (logsimilar damage.
Once we obtain such a result, we need not overly concern
ourselves with the suitability of the Fat-Tree for specific
tasks, such as image processing or matrix multiplication, ladders, share the leaves with the horizontal row ladders.
since we know that it can perform almost as well as any This network is similar to Leighton's mesh of trees net-
special purpose network of the same size. We propose a work, with the trees replaced by ladders, which are very
new area-universal network, show that it has some fault similar to X-trees.
tolerance properties, and obtain some impossibility re- The advantage of the ladder over a tree is that on a
suits that imply that a much more fault-tolerant universal binary tree, a message traveling from node i to node j
network cannot be constructed. to the right of it may be moving left at times. There is

Our goal is to design a network which is almost as ef- a very simple routing rule on the ladder that avoids this
ficient and fault tolerant as any other network laid out in ioblem. Therefore the ladder has some fault-tolerance
the same area. We would like our network to be area- - if a message needs to be routed between two leaves,
universal, and to retain its universality even after it is and the part of the ladder between them is intact, then
damaged. That is, we require that the remaining undam- it is possible to route the message. Let us now assume
aged parts of the network will be area universal for the that faults happen in blocks, or squares, whose side is the
remaining undamaged layout area (see Figure 1). Un- same side as the width of the ladder in the mesh of lad-
fortunately, this goal is too ambitious, and we prove it ders. This assumption meshes well with the universality
impossible to achieve.

Our proposed network, the mesh of ladders is con-
structed from n ladders (see Figure 2) laying horizontally
one above the other, and n vertical ones, laying side by I
side (see Figure 3). The vertical ones, called column

"*Suprvisnd by Charles E. Leiserson. This research was supported Figure 2: A layout of a ladder graph. The gray nodes are
in pan by the Defense Advanced Research Projects Agency undra
Grant N00014-91-J-1698. called leaves, and the smaller black nodes are routing nodes.

51-1



height (c - 1) log n = Q (log n).

G cannot be laid out in an area in which its subgraph T
RW Lcannot be laid out. Using a result of Leiserson that showsS ROW LADDERS that a complete binary tree cannot be laid out in a narrow

rectangle, and showing that an area universal network in
a narrow rectangle must have a small diameter, we obtain
a contradiction.

The other and more general impossibility result is ob-
tained in a different way, which is based on combinatorial

COLUMN LADDERS counting arguments. We count the numbei of possible
faults, and the number of ways of overcoming faults in

Figure 3: A sketch of a mesh of ladders with 5 row and 5 a given network. We find out that there are more faults

column ladders. then ways to overcome them, and hence there must be
some faults that the network cannot tolerate while still
being able to si-mu--ate -ayo n --- small

arguments. Our network can simulate the other network begleotnwrk with wav --ma

witha sallslodow an othr ntwok tat uffred slowdown. Again we assume that the I/0 behavior of the
with a small slowdown any other network that suffered simulated network has to be preserved. This result is ex-
a slightly worse damage. By following the layout of the pressed in the a theorem in the form of a tradeoff between
wires in the simulated network, it is possible to simu- the number of faults, the size of faults, and the smallest
late any network in a fault tolerant manner. If the mesh slowdown that can be achieved.
of ladders cannot deliver a message because a ladder is
damaged, then the wire carrying the message in the orig- Theorem 2 Let the functions p, t, b, 5 satisfy
inal network is damaged too, and the simulated network
also cannot deliver the message. The slowdown is small 1. p(n) log 6(n) < t(n) log t(n) and
only for network layouts in which the number of bends 2. t(n) < n
in each wire is small however, since whenever there is a 4b(n)

bend in a wire, we need to switch the message from a row for all n > no for some constant no. For any network
ladder to a column ladder or vice versa, layout N in an area of n x n with maximum degree 6(n),

We come short of our goal at two points. One is the there is a way of damaging at most 16t 2(n) blocks of
assumption that faults happen in blocks, and the other is size b(n) x b(n) each and a network R laid out in the
that our network is not fault-tolerant and area-universal same n x n area, such that N takes more than p(n) time
over all networks, but only over networks with a small to simulate a step of R, under a geometric mapping of
number of bends in each wire. We have been able to terminals.
prove that both points cannot be overcome by any other
network. Regarding the first point, we show that under References
the assumption that an area universal network must ex-
hibit the same I/O behavior as the simulated network, no [11 S. Toledo, Competitive Fault-Tolerance in Area-
area universal network exists that can fit in a sufficiently Universal Networks, Proceedings of the 4rd Annual
narrow rectangle. Thus, if we allow any shape of damage ACM Symposium on Parallel Algorithms and Archi-
to occur, we might be left with such a shape, a narrow tectures, 1992, to appear.
rectangle. But since there is no area universal network in
such a shape, it cannot be that the remaining parts of our
network can simulate any other network in the same area.
The impossibility result relies on the following lemma.

Lemma 1 Let G be a graph with n nodes and diameter at
most n-1 'for some fixed 1/2 < c < 1, andassume n >
no for some constant no. Then G contains a subgraph
T which is homeomorphic to a complete binary tree of

51-2



Software-Managed Variable-Size Contexts for Multithreading

Carl A. Waldspurger"
MIT LCS Parallel Software Group

e-mail: carl~lcs.mit.edu

1 Overview
Multithreading is an important technique for toler- Opad.e Reg-1'd I Rel Functiol

ating latency in multiprocessor systems. Support for

multiple contexts and rapid context switching permits
high latency operations such as remote memory refer- RRM
ences and synchronization events to be overlapped with
computation, which improves processor utilization.

This paper presents a new mechanism that efficiently
supports multiple variable-size processor contexts with
minimal hardware support. It adheres to the RISC phi-
losophy [Pat85] by maintaining a simple processor ar-

chitecture and relying upon the compiler and runtime
system to manage the allocation and use of contexts. Figure 1: Register Relocal ion Hardware

Instead of statically dividing contexts in hardware,
the division of the register file into contexts is managed register operand fields. After the instruction decode
in software. Because the size of contexts is not dictated phase, no additional work needs to be performed.
by the hardware, the register file can be organized into a The only other hardware change that may be neces-
collection of contexts with varying sizes. This provides s he owie the h trnal phs that cay te reg-
considerable flexibility in the use of the register file to ister operands specified by an instruction. This is be-
support multithreading. cause a relocated register operand requires Rlg n] bits

Since the optimal number of contexts needed to to address the entire register file, while an original reg-
maximize processor utilization is application-dependent ister operand may only be able to address a smaller
[Saa9O], this flexibility provides an opportunity for sig- portion of the register file, due to limitations on the
nificant performance improvements. For example, the width of a machine instruction. Such a constraint on
register file can be divided into a small number of large the number of addressable registers would also place an
contexts, as is conventionally done in hardware. Al- upper bound on the size of a single context, which weternatively, the register file can be divided into a large will denote by smaw.
number of small contexts, providing support for many
fine-grain threads. Finally, the register file can also be 3 Software Support
divided into a diverse combination of context sizes, sup-
porting a mix of both coarse and fine-grain threads. 3.1 Context Allocation

A context can be allocated with size 2k registers,
2 Hardware Support for any k > 0. However, the maximum context size

A register relocation mask (RRU) is maintained in a is limited to sm: by the number of address bits used
special hardware register that can be set via a special for register operands. Also, the minimum context size
LDRRP instruction. The RRX register requires Pg n] bits should be large enough to maintain some state other
for a processor architecture with n general registers. than a program counter. For example, practical context

RISC architectures typically employ a fixed-field de- sizes for an architecture with 256 registers and 6-bit
coding scheme in which register operands are always register operands would be 4, 8, 16, 32, and 64 registers.
specified at the same location within an instruction Context allocation is performed entirely in software,
[Pat90]. During every instruction decode, a bitwise OR and is thus extremely flexible. One option is to parti-
operation is performed with each of the instruction's tion the register file statically into contexts (with identi-
register operand fields and the RUN, yielding relocated cal or differing sizes) for a particular application, mak-

ing allocation and deallocation extremely cheap. An-
*Supervised by Professor William E. WeWh. E-mail: other option is to partition the register file dynamically

carll•cs.mit.edu. MIT office: NE43-521a. Supported in part by into contexts of varying sizes as needed.
an AT&T USL Fellowship, the NSF under grant CCR-8716884,
DARPA under contract N00014-89-J-1988, and by an equipment As a proof of concept, we have coded general-purpose
grant from DEC. dynamic context allocation and deallocation routines

52-1



for a RISC architecture with 128 registers. The imple- [Aga91]. We are currently investigating methods for
mentation employs simple shift and mask operations to adaptively limiting the number of contexts at runtime.
binary search an allocation bitmap. General-purpose
allocation executes in approximately 25 RISC cycles 5 Related Work
in the worst case, and general-purpose deallocation re- A number of processor architectures that include
quires only 2 RISC cycles.' multiple hardware contexts have been proposed. Finely

3.2 Context Switching multithreaded processors, exemplified by the Denelcor
HEP [Smi78], execute an instruction from a different

After a scheduler has chosen the next thread t to thread on each cycle. Coarsely multithreaded proces-
run, it performs a context switch to t's loaded context: sors, such as APRIL [Aga9O], execute larger blocks of

"* Store the current program counter in a register as- instructions from each thread, and typically switch con-
sociated with the current context. 2  texts only when a high-latency operation occurs. Our

"* Execute a LDRRN to switch to t's context. register relocation mechanism supports coarse multi-
"threading, but permits a more flexible organization of

* Jump to the program counter stored in t's context. the register file by managing contexts in software.
If t is not associated with any loaded context, then A completely different approach is the Named State

it must first be loaded as described below. Processor [Nut91], which replaces a conventional regis-

3.3 Context Loading ter file with a context cache. The context cache binds
variable names to individual registers in a fully associa-

Thed randuntime) systiem can provi srted context tive register file, and spills registers only when they are
load (and unload) routines for each surported context imdaeynee o nte ups.Sneorrg
size s. Each routine would simply ]:)ad (or unload) all immediately needed for another purpose. Since our reg-
registers numbered 0 to s -i- . The r automatically ister relocation mechanism supports variable-size con-
provides the necessary relocation for the active context, texts, it permits a binding of variable names to contexts

provdesthenecssay rloctionfortheactve ontxt, that is finer than conventional multithreaded proces-
or can be explicitly loaded to specify another context.

sors, but coarser than the context cache approach.
3.4 Compiler Support

Compilers can essentially generate code as usual, and 6 Conclusions
may assume that the available registers are numbered We have presented a new mechanism that efficiently
from 0 to smo. -1. Although the compiler is permitted supports multiple variable-size processor contexts with
to use all s,,, registers, many threads will require fewer minimal hardware support. Simple register relocation
registers. hardware, combined with software support, provides

For each thread, the compiler must inform the sched- significant flexibility in the use of the register file to
uler of the number of registers that the thread requires. support multithreading. We are currently investigating
By guaranteeing not to use any additional registers, the software methods to adaptively control the number of
compiler - not the hardware - is responsible for ensur- loaded contexts and optimize performance.
ing protection among thread contexts.

[AgaSO] A. Agarwal, B. Urn, D. Kranz, and J. Kubiatowicz.4 Extensions and Future Work "APRL: A Proceasor Architecture for Multiprocesa-

We have also devised a related approach to multi- ing", Proc. 17tk Aannual Iternational Symposium on

threading that requires no hardware support, and can Computer Architecture, June 1990.

be used with many existing processors. The basic idea [Aga91] A. A. -wal. "Performance Tradeoffs in Multithreaded
Procemors", Technical Report MIT/LCS/TR..501, MIT

is to have the compiler generate multiple versions of Lab for Computer Science, April 1991.
code that use disjoint subsets of the register file. Thus, [Noa9]2 M. Noakes. "MDP Programmer's Manual", Concurrent
register relocation is effectively performed statically at VLSI Architecture Memo #40, MIT Al Lab, 1992.

compile-time. This scheme has the obvious disadvan- [Nut91] P. Nuth and W. Daily. "A Mechanism for Efficient Con-
eof code expansion. However, the restrictions on text Switching", Proc. IEEE Conference on Computer

tage oDesign, October 1991.
context sizes no longer apply, and any partitioning of [Pats8] D. Patterson. "Reduced Instruction Set Computers",
the register file is possible. Communications of tie A CM, January 1985.

Another interesting issue is the tradeoff between im- (Pat9o] D. Patterson and J. Hennesy. Comnputer Architecture:
proving processor utilization and exacerbating cache A Quantitative Approach, Morgan K&ufunann, 1990.
interference as the number of contexts is increased (SanW] R. Saavedra-Barrera, D. Culler, and T. von Eicken.

"Analysis of Multithreaded Architecture. for Paral-
'If an operation such as the J-machine's M instruction is lel Computing", ACM Symposium Parallel Algorithms

available that can find the first bit set in a word [No0*2], then and Architecture, July 1990.
general-purpose allocation can be performed in fewer than 10 [Smi781 B. Smith, -A Pipelined, Shared Resource MIMD Com-
RISC cycles. puter", Proc. International Conference on Parallel

2 1t may be convenient to adopt a convention of always storing Processing, 1978.
the PC in a fixed register relative to a context, such as register 0.

52-2



A Model of a Hierarchical Cache Coherence Protocol'

Deborah A. Wallach
Room 614

Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139
kerrai. mit.edu

As the number of processors that are connected
together to form multiprocessors grows, efficiently
supporting a shared memory programming model
becomes difficult. We have designed PHD, a hi-
erarchical directory-based cache coherence proto-
col, to allow shared-memory support for systems
containing massive numbers of processors. We
have created an analytical model of the protocol
in order to study the behavior of the protocol on
machine configurations too large to simulate.

The Protocol for Hierarchical Directories (PHD)
supports a shared memory model by synthesizing
a global shared memory from the local memories
of processors. Two of the global primitives of the
protocol are modeled: read and write. The pro-
tocol is designed to work on a tree (the hierarchy);
this tree is mapped onto the actual multiproces- Figure 1: Every node in the hierarchy is modeled
sor topology, as a finite state machine.

Read-only copies of blocks may be stored in the
caches of any number of processors. To find a
block, a processor asks its parent for a copy. The
parent must know which of its children has copies. exactly one acknowledge message is sent to the
If none do, it forwards the message upwards. Oth- node requesting the write.
erwise, it forwards the read message to any child In the model, we follow average read and write
processor which already has the block. Read op- requests and determine how far up the hierarchy
erations can therefore be satisfied locally, they must travel in order to be satisfied. From the

Write operations involve finding all of the copies average read and write heights, we can approx-
of a block in the system and deleting them. Only imately determine the average number of mes-
the nodes in the smallest subtree completely con- sages sent in order to satisfy read and write re-
taining all copies of the block are involved in the quests.
write process. The owner of the block transfers The inputs to the model include the number of
ownership to the node requesting the write. Ac- levels in the tree hierarchy, the radix of the tree,
knowledgments of deletion from all of the nodes the frequency of writes in the memory request
which previously had copies are combined, and stream, and the type of sharing which occurs. As-

1William Dally both supervised and contributed to this sociated with each type of sharing are additional
work. The research described in this paper was supported in parameters which allow us to approximate the
part by the Defense Advanced Research Project$ Agency un- average sharing characteristics.
dercontracts N00014-8WK-0738 and N00014-87K.0825 and in
part by a National Science Foundation Presidential Young In- The model includes a finite state machine at ev-
vestigator Award, grant MIP-857531, with matching funds ery node, as shown in Figure 1. This machine
from General Electric Corporation and IBM Corporation and
by a Office of Naval Research Graduate Fellowship, grant models the state of a single cache block. The
N00014-90-J-1778. FSMK shown enlarged in Figure 2, contains only

53-1



third application attempts to simulate groups or
clusters of processors working on data. Clusters
are said to own data. The processors within a
given cluster are made more likely to reference
data owned by the cluster than data owned by

• Q I) l-FAa= other clusters. This model is similar to the one
S (K 2 proposed by Qing Yang, in [2].

We have written a trace-driven simulator to model
the operation of the PHD. We use synthetic ad-

•,mdua,•--nm) dress traces matching the three applications as
input to the simulator. The output statistics from

Figure 2: Every node in the hierarchy is modeled the simulator are then compared to the predic-
byr 2: Eeparatecoy node this fnitertat achyis neld tions of the model, in order to verify the model.
by a separate copy of this finite state machine. Once the model has been fully characterized, we

will be investigating the behavior of the protocol
for machine sizes we cannot simulate.

two states: valid and invalid. A node with its
FSM in the invalid state has no copy (if it is a References
leaf node), or no descendants with copies (if it is
not a leaf node). By definition, the top node of the [1] A. Agarwal, *A locality-based multiprocessor
tree is always in the valid state. cache interference model,* VLSI Memo MIT
A leaf node in the invalid state transitions to VLSI Memo 89-565, Massachusetts Institute
valid if it makes a read or write request. It tran- of Technology, 1989.
sitions from valid to invalid if any other node
makes a write request. This transition corre- [2] Q. Yang, "Performance analysis of a cache-
sponds, in the actual protocol, to the write in- coherent multiprocessor based on hierarchi-
validate which the leaf would eventually receive. cal multiple buses," in PARBASE-90 Interna-
This FSM is identical to the one Anant Agarwal tional Conference on Databases, Parallel Ar-
proposed in [1]. chitectures and Their Applications (N. Rishe,
The transitions for a node in the interior of the S. Navathe, and D. Tal, eds.), pp. 248-257,

tree are similar to that for the leaf node. The IEEE Computer Society Press, 1990.

transition from invalid to valid occurs ifa descen- [31 D. A. Wallach, "A scalable hierarchical cache
dant leaf node makes a request. The transition coherence protocol." SB Thesis, MIT, May
from valid to invalid occurs if a non-descendant 1990.
leaf node makes a write request.

We consider the accesses occurring to the address
under consideration from the point of view (POV)
of one leaf node and all of its ancestors in the tree.
We designate those nodes as POV nodes.

From the previously described system, we can cal-
culate the probabilities that nodes in the hierar-
chy will have copies of the address. We can use
these probabilities to directly calculate the aver-
age read and write heights.
Three applications are being studied. One is a
uniform reference pattern, meaning that every
processor is equally likely to reference a partic-
ular piece of data. The second is a basic relax-
ation, where in an iteration every point in an
n-dimensional mesh updates its own value by a
function of the value of its 2n neighbors. The

53-2



Embedding Leveled Hypercube Algorithms into Hypercubes

(Extended Abstract)

David Bruce Wilson*

dbwilson•.mit.edu
Department of Mathematics,

Laboratory for Computer Science
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

Introduction An Example

In many parallel computers with hypercube networks, the There is an embedding E3 which accelerates each edge of

processors can communicate simultaneously along all the the hypercube Q3, assuming that only one guest dimension

wires connected to them. Often the software that these is used at a time. Recall that the nodes of the n-dimensional

machines run use only a few hypercube dimensions at a hypercube Qr, are labeled by a atring of n address bits. There

time. Many hypercube algorithms are leveled: they use is an edge between two nodes if their addresses differ by one

only one dimension at a time (see for instance [2]). A bit. In this paper all edges are undirected.

programming language may allow the programmer to specify An embedding E G - H bijectively maps the guest

communication in a mesh, but along only one mesh axis at vertices of graph G to the host nodes of graph H. An

a time. If the mesh is embedded into the hypercube using embedding also maps each guest edge tc - network of host

Gray codes, then only a few hypercube dimensions are used wires which simulate that edge.

at a time. If the mesh or leveled hypercube algorithm is The node map of embedding E3 is given by

embedded into the host hypercube in the straightforward e b6bob 2 , b2 + b, + bo = 2;
way, much of the machine's bandwidth will be unused. (b.2bo) = b2b, otherwise,

There are embeddings that better utilize the machine's
bandwidth; each guest edge is simulated by multiple paths where b2b6bo are the guest address bits and C3 (b.bibo) are

of wires in the host, so the communication throughput of the the host address bits. The networks for the dimension-C guest

guest edges is larger than that of a host wire. We will say that edges are shown in Figure 1. Each individual dimension-O

the guest edges are accelerated, At one extreme, embeddings edge is simulated by a host network which transmits 3/2

that accelerate the edges of a cycle have been worked out packets per unit time. Furthermore, the host graph is able to

(1]. The cycle embeddings can be composed to make a simulate each of these edges simultaneously. Informally we

mesh embedding. This paper concentrates at the opposite will say that E3 accelerates dimension 0 by 3/2.

extreme, and gives embeddings which accelerate the edges The host networks for the other guest edges are easily

of a hypercube, assuming only one guest dimension is used constructed because of symmetry in the node map. We

at a time. If only one mesh axis is used at a time, then in may cyclically shift the guest address bits, apply C3, and

some cases the above cycle and hypercube embeddings can shift the bits back; the node map would remain unchaaged&

be combined to make a better mesh embedding [3]. To get the networks that simulate guest edges crossing

Before proceeding, I would like to point out that this paper other dimensions, we may shift the address bits so that the

is primarily of theoretical interest. In practice, communi- edges cross dimension 0, take the appropriate dimension-0

cation throughput is significant when there are many more networks, and shift the address bits back.

virtual processors than physical processors. But in this case, If E Q,, - Q. is an embedding for which each guest

many leveled algorithms can be made to better utilize the edge is simulated by a host network that can transmit a

machine's wires with pipelining techniques. It is surprising, packets per unit time. we will say E has acceleration a. If

however, that embedding a hypercube algorithm into a hy- for each dimension d, the host hypercube can simultaneously

percube in the straightforward way can be suboptimal when simulate all guest edges crossing dimension d, then E will

the algorithm uses one dimension at a time. be called a leveled embedding. Therefore t.3 is a leveled
embedding with acceleration 3/2.

There is a different leveled embedding &6 "Q6 '---Q

"Supervised by Charles E. Leisermon. This research was sup- which has acceleration 2. Embedding E6 has the additional

ported in part by the Defense Advanced Research Projects Agency

under Contracts N00014-87-0825 and N00014-91-J-1698, and in property that no host wire is multiplexed between guest
part by an ONR-NDSEG fellowship. edges. This embedding is described in [3].

54-1



O2 ((n/ log n)i°., ') = .( ,J l ). The next theorem provides

...... ....... l an upper bound on the accleration of any leveled embedding.

* 01 imTheorem 3If E :Q,, '- Q,~ is a leveled embedding,

00I 101 01 111

then E Ucctl(Tr N Qn by at most 0(n/ log n).

000 001 000 ... . .00 Practical Hypercubes

100 Table I gives the acceleration of the "best" leveled embed-l00 110 100 110 ding I have found for Q,. where n is not too large. One

leveled embedding is considered "better" than another if
it has higher acceleration; the multiplexing of host wires is
ignored by this metric. This table also gives an upper bound

Oil II1 Oil II on the acceleration of any leveled embedding for Q,. Each
of these upper bounds is in fact also an upper bound on the

0101101 . 0. amount by which any single dimension can be accelerated.

n La u Ti a U

000 ....... 001 000: .... 001 1 1 1 11 2 4.33
2 1 1 12 2.25 4.67
3 1.5 1.5 13 2 5

100 110 100 110 4 1.5 2 14 2 5.33

Figure 1: The flow networks simulating the dimension- 5 1.5 2.33 15 2.25 5.67

0 guest edges. The edges (000,001), (010,011), and 6 2 2.67 16 2.25 6

(110, 111) are each simulated by a host path of length 7 2 3 17 2 6.33

one (carrying one packet per unit time) and two addi- 8 2 3.33 18 3 6.67

tional paths of length three (each carrying one-quarter 9 2.25 3.67 19 2 7

packet per unit time). The edge (100, 101) is simulated 10 2 4 20 2.25 7.33

by three paths of length three (each carring one-half Table 1: As a function of n, a is the acceleration of the
packet per unit time). "best" leveled embedding for Q,, I have found, and u is

an upper bound on this acceleration.

Asymptotics

Leveled embeddings can be composed with one another to Acknowledgements
make new embeddings. The following theorems are proved I would like to thank Charles Leiserson and Tom Leighton
in (31, 1 simply state them here. for the technical advice they gave me while I worked on this

Theorem 1 If El : Qp - Qp and E2 : Qq . Qq problem. I also found a program written by Cliff Stein to be

are leveled embeddings with acceleration al and a2 , then useful for exploring embeddings of small hypercubes.

E 2 ® El is a leveled embedding from Q1,q to Qpf with
acceleration aja 2 . If El and E2 don't multiplez the host References
wtres, then neither does E., ® El.

By repeated application of Theorem 1, using a leveled [1] D. S. Greenberg and S. N. Bhatt. Routing multiple
Bre ateddingE: applicaccelerationofhrm ui a, legele paths in hypercubes. In Proceedings of the 2nd An-

embedding E Qf -. Qp with acceleration Q, we get nual ACM Symposium on Parallel Algorithms and
for n -- ptm a leveled embedding from Qn into Q,, with Architectures, pages 45--54, 1990.

acceleration am -= nig,' . For general n we lose a log

factor [2] F. T. Leighton. Introduction to Parallel Algorithms
and Architectures: Arrays, Trees, Hypercubes. Mor-Theorem 2 II E :Qp --. Qpis leveled wi th accele.ra- gnKumn ulses 92

tion a, then for each n there is a leveled tmbedding En

from Q,, into Q,. with acceleration ((,/ log n)IOC, ). [3] D. B. Wilson. Embedding leveled hypercube algo-
If E does not multiplez ho.st wires, then nucthe r does E, rithms into hypercubes (extended abstract). To appear in

Proceedings of the 4th Annual ACM Symposium on
In particular, there is a leveled embedding from Q,, into Parallel Algorithms and Architectures, 1992.

Q,. which does not multiplex host wires and has acceleration

54-2



"What are the Grand Challenge Problems in Supercomputing Technology?"
Panel Discussion

Moderator: Eric Brewer
Scribe: David Chaiken

1 Introduction

In 1900, David Hilbert proposed twenty-three problems covering all areas of mathematics that guided
the field for decades. These problems served a driving fcrce for mathematicians, providing instant
fame (and fortune) to the people who could solve them, or even parts of them. The goal of this panel
session was to propose several grand challenge problems, similar in spirit to those of Hilbert[W1:

[A] problem should be difficult in order to entice us, yet not completely inaccessible, lest
it mock at our efforts. It should be to us a guide post on the mazy paths to hidden truths,
and ultimately a reminder of our pleasure in the successful solution.

To this end, six graduate students were asked to identify some of the long-term goals in the field of
supercomputing technology. A summary of each of their talks follows, in order of presentation.

2 Panel Talks

2.1 Carl Waldspurger. Portable Resource Management

Optimizing the performance of a parallel application is hard even when a programmer disregards
the proliferation of different architectures. When faced with the task of moving from one parallel
system to another, the task becomes nearly impossible. Providing the abstraction mechanisms that
will allow programmers to easily migrate applications over a range of parallel architectures is a
significant problem to solve.

While there is no cohesive "big picture" that addresses the portability problem, a huge literature
on computational resource management exists. Static analysis by compilers promises to address the
problem in a large class of programs, but this technique is inadequate for data-dependent applica-
tions. Dynamic feedback mechanisms implemented in runtime systems provide automatic resource
management, but they tend to impede human control when it is necessary. Some systems leave the
multidimensional resource allocation problem to the programmer, thereby permitting human control,
but forcing the programmer to perform tasks that might be done automatically. (For example, virtual
memory relieves programmers of the dreaded overlay problem.)

In order to make parallel applications portable, it will be necessary to develop language constructs
that allow programmers to express performance tradeoffs without having to write low-level resource
allocation. The first step is to develop a uniform model of parallel computation that incorporates both
tasks and resources into a coherent framework. Using this model, the cost of consuming each resource
should be quantified in terms of uniform, abstract units that may be used for a variety of different
architectures. Allowing the programmer to express the contention between tasks for resources is a
critical feature of this framework. The key to developing this abstraction lies in balancing the amount
of human control (expressivity) with the level of detail that programmers must address (transparency).

55-1



2.2 Mike Klugerman: Fault Tolerance

Given the goal of massively parallel systems, a simple calculation shows that fault tolerance is a
problem that must be solved. Consider the failure rate of a system as a whole. If we make the
(optimistic) assumption that a single processor will fail at the rate of 10 -5 failures per hour, then a
machine with one million (101) processors will incur a rate of 10 failures per hour. In order to build
this machine with a reasonable failure rate, it should be able to tolerate faults in up to 10% of its
processors (103). The resulting failure rate for the system would then be 10-4 failures per hour.

Two key problems must be solved to achieve fault tolerance: Maintaining data integrity and fault
tolerant routing. Maintaining data integrity involves preserving the sati- of memory in the presence
of hardware failures. Checkpointing provides integrity by periodically copying memory to stable
storage. This offline technique tends to waste time that could be spent doing processing. Replication
of data using redundant hardware maintains integrity in an online fashion - at the expense of the
extra hardware required to implement the scheme. The challenge in maintaining data integrity is to
reduce the amount of replication that is required to tolerate faults.

Fault tolerant routing involves maintaining connections between working parts of a system, even
when some of the components of the system fail. Theorists understand the behavior of routing
algorithms under the assumptions of worst case or random failure models. Unfortunately, these types
of models do not correspond to the behavior of real-world systems, which generally do not encounter
worst case scenarios but do suffer from correlated faults. Solutions to the fault tolerant routing problem
require a better understanding of the correlations between failures in real systems.

2.3 Mark Reichelt: Sparse Matrices

The problem of solving Ax = 6 efficiently on a parallel supercomputer has not been solved completely.
While efficient algorithms exist for solving dense matrices, an efficient parallel algorithm for sparse
matrices does not exist. Sparse matrices, which have only a small number (0(1)) of elements per row
of A (and lots of zeros), occur naturally in a large number of applications.

For certain types of sparse matrices with special structures, it is possible to use iterative techniques
to solve the related system of equations. These techniques take advantage of the structures of certain
problem domains, which are reflected in the pattern of non-zero elements in the associated sparse
matrices. Unfortunately, each of these iterative techniques requires special synchronization, error cal-
culation, and termination conditions. No existing iterative technique will work for all sparse matrices.
In addition, the iterative techniques that do work for special structures tend to take a long time to
run.

It is possible to use a parallel algorithm for dense matrices to solve sparse matrices. However, this
method is not efficient because an fast sequential algorithm for sparse matrices exists. That is, the best
serial solution for dense matrices requires O(N 3 ) steps, while the parallel algorithm takes O(N log N)
steps on O(N 2/ log N) processors. This yields an efficiency of O(N 3/((N log N)(N 2/log N))) = 0(1).
In contrast, the sequential algorithm for solving sparse matrices requires only 0(N 5s) steps, yielding
an efficiency of 0(1/N' 5) when using the parallel algorithm for dense matrices. As a result, scientists
who require solutions to sparse systems of equations challenge us to develop better parallel algorithms.
Until we develop faster algorithms, they will opt for fast sequential implementations.

2.4 Madhu Sharma: Scheduling for Locality

Over the last decade, two critical problems in parallel processing have been solved. First, the issue
of expressing and identifying parallelism has been addressed by a number of parallel languages with
constructs that reveal implicit parallelism, allow non-strict evaluation, and permit synchronization
between processes. Second, the problem of tolerating communication latency has been solved by a

55-2



host of mechanisms, such as prefetching, relaxed memory models, and multithreading.

Today's challenge is to deal with the principal performance bottleneck in parallel architectures:
communication bandwidth. In order to utilize this resource most efficiently, systems must minimize the
bandwidth requirement of applications by maximizing the locality of communication. Current systems
do not perform this task well. While some combinations of languages, compilers, and mapping
schemes achieve limited success in maximizing the locality for programs with regular communication
patterns, they do not allow for the dynamic effects associated with fine-grain parallel execution. Even
for applications with regular communication patterns, cache hit rates remain low and demand on the
processor interconnect remains high.

The problem that needs to be solved is constructing schedulers that effectively manage fine-grain
parallel activity. Such schedulers should maximize both locality of reference in caches and communi-
cation locality between processors. In order to achieve this goal, it might be necessary to incorporate
a model of locality into parallel languages, thereby allowing systems to take advantage of the pro-
grammer s vantage point.

2.5 Rich Lethin: The Hardware Creativity Crisis

"The Hardware Creativity Crisis" is a challenge to change our way of thinking about developing
computer systems, rather than identifying a particular problem to solve. The current methodology
for doing hardware research stifles creativity. Today's researchers are locked into a pattern of making
incremental improvements in existing architectures or building new systems that are compatible with
old ones. The process of tuning systems with stock benchmarks (e.g. SPECmarks) and then using the
same benchmarks to guide the development of the next generation of computers results in an inces-
tuous cycle: if we set out to build a better VAX, then that is exactly what we will build. Furthermore,
by binding ourselves to the current generation of CAD tools, we confine ourselves to a single design
method and to a previous generation of technology.

Instead of attempting to build yet another CDC 6600 in the latest-and-greatest technology, re-
searchers should balance theory and tuning. We should focus on the fundamental building blocks
of computer systems, avoid excessive performance tuning, construct prototypes quickly, and draw
real conclusions from our prototypes. More "dark horse" projects, in the spirit of neural networks
and hardware implementations of genetic algorithms, would be healthy contributions to the creative
process.

2.6 Kirk Johnson: Communication is the Crux

The grand challenge in high performance supercomputing is effectively delivering the
cost/performance advantages promised by parallel systems to the end user. The obstacle to this
goal is the difficulty of programming large-scale parallel systems due to the problem of managing
communication and synchronization costs. Current systems take one of two approaches to this prob-
lem: explicit or implicit control of communication. Explicit control, required by message passing models
of computation, allows programmers to manage communication directly and results in architectures
that are easy to build. However, demanding the programmer to take control complicates the job of
developing applications. Implicit control, offered by shared memory models, simplifies the job of
programming but results in architectures that are harder to build. The lack of human control also
makes it harder to manage communication and synchronization.

In order to manage communication effectively, we need to develop hybrid models of parallel
computation with the benefits of implicit control and the power of explicit control. For example,
shared memory systems could be augmented with communication annotations that allow a system
to exploit information about an application from the programmer as in the work on "Cooperative
Shared Memory" at Wisconsin [2]. This approach would require architectures (such as Alewife) that

55-3



efficiently support both message passing and shared memory models. New programming systems
should also allow the programmer to express the structure and costs of communication at a high-level.

3 Open Discussion

Early in the discussion following the panelists' presentations, the participants decided that for an
engineering discipline, it is impossible to propose grand challenges in the spirit of Hilbert's problems.
Rather than identifying problems that have distinct solutions, the panelists proposed long term goals
that may be satisfied to a lesser or greater extent but will always leave room for improvement. Several
themes emerged during the presentations and the ensuing discussion.

Balancing human control and automatic resource management. Several of the panelists discussed
the unresolved tradeoff between the ease of programming and the efficiency of parallel applications.
This tradeoff impacts every aspect of parallel system research from models of computation to pro-
gramming languages to hardware mechanisms. One participant suggested that our expectations might
be too high for the efficiency of automatic systems. As in the sequential world, the user might have to
sacrifice some efficiency in order to gain convenience. A good example is the efficiency/convenience
tradeoff implicit in uniprocessor compiler analysis. Another participant wondered if the sequential
model of computation is fundamental to human thinking. In this case, it will never be easy for
programmers to write applications for large-scale parallel architectures.

Communication bandwidth is a principal bottleneck. Of all of the resources that must be managed
through direct human control or by automatic mechanisms, communication bandwidth received the
most attention. Judging by the emphasis of the panelists, developing methods for efficiently allocating
this resource will be critical to the acceptance of large-scale parallel systems.

The role of universities in supercomputing research. Research groups in universities can not com-
pete with the work being done in industry, nor should they try. Companies are very good at turning the
incremental improvement crank and generating the latest and greatest VAX implementation. Industry
also produces far more I lished, production-quality software than do universities. The participants
geioarally agreed that universities should not duplicate the efforts of industry.

The group disagreed on the exact role that universities should perform. Some students saw no
problem with assisting industry by developing new analysis techniques or by proposing small changes
to existing systems. Others argued that universities should provide the force to move research out of
local minima by demonstrating the benefits of radically different approaches to supercomputing (as
they did with the Connection Machine and VLIW architectures).

Portability. While it would be beneficial to have a standard model of parallel computation and a
single language that could be supported by many parallel architectures, no consensus on the structure
of the model or the constructs in the language exists. Several of the panelists proposed research that
could be done in the area of portable language constructs. These ideas (and more) must be evaluated
before reaching the goal of portability. At the current stage of research, diversity is important to the
evolution of languages and models of computation. In the long term, the most viable programming
methods should dominate the current field of candidates.

Building a user community. We can interpret Mark Reichelt's challenge in the context of a broader
user community. There are a large number of users who have applications that are large enough to
benefit from the cost/performance tradeoffs available from large-scale parallel systems. However, the

55-4



state of the art of parallel algorithms has not yet reached the same stage as sequential algorithms.
Since efficient parallel algorithms have not yet been found for many problems, potential users do not
have sufficient motivation to migrate their applications to parallel systems.

Unfortunately, this situation poses a Catch-22: in order to make parallel systems efficient and
easy to program, researchers need a variety of significant applications to study. On the other hand,
users will not develop such applications until parallel systems are efficient and easy to program. This
problem is critical to the future of research in supercomputing and led to an answer to the question,
"What should we be doing at MIT?" The only confident answer from the group (besides increasing
graduate student salaries) was to "open the doors [of Tech. Square] to real people who need FLOPs."
Our research groups need better communication with potential users, especially those within MIT
itself.

References

[11 David Hilbert. Mathematical Problems. Bulletin of the American Mathematical Society, 8:437-479,
1902. Reprinted in Proceedings of Symposia in Pure Mathematics. Volume 28, 1976.

[21 Mark D. Hill, James R. Larus, Steven K. Reinhardt, and David A. Wood. Cooperative Shared
Memory: Software and Hardware for Scalable Multiprocessors. In Fifth International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS V) - to appear, New
York, October 1992. IEEE.

55-5


